翻訳と辞書
Words near each other
・ アーベルソフトウェア
・ アーベルソン石
・ アーベル・P・アップシャー
・ アーベル・アップシャー
・ アーベル・タスマン
・ アーベル・パーカー・アップシャー
・ アーベル・ヤコビ写像
・ アーベル・ルフィニの定理
・ アーベル和
・ アーベル圏
アーベル多様体
・ アーベル多様体の数論
・ アーベル多項式
・ アーベル拡大
・ アーベル方程式
・ アーベル曲面
・ アーベル総和法
・ アーベル群
・ アーベル群のテンソル積
・ アーベル群のランク


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

アーベル多様体 : ミニ英和和英辞書
アーベル多様体[あーべるたようたい]
=====================================
〔語彙分解〕的な部分一致の検索結果は以下の通りです。

: [ちょうおん]
 (n) long vowel mark (usually only used in katakana)
: [た]
  1. (n,pref) multi- 
多様 : [たよう]
  1. (adj-na,n) diversity 2. variety 
: [よう]
  1. (adj-na,n-adv,n) way 2. manner 3. kind 4. sort 5. appearance 6. like 7. such as 8. so as to 9. in order to 10. so that 1 1. yang 1
様体 : [ようたい]
 【名詞】 1. appearance 2. condition

アーベル多様体 : ウィキペディア日本語版
アーベル多様体[あーべるたようたい]

数学において、特に代数幾何学複素解析数論では、アーベル多様体(abelian variety)は、射影代数多様体であり、また正則函数(regular function)〔正則函数とは、ある与えられた領域で、解析的な函数のことを言う。〕により定義することのできる群法則を持つ代数群でもある代数多様体を言う。アーベル多様体は、代数幾何の最も研究されている対象であり、同時に代数幾何学や数論やそれ以外の他の分野の研究の不可欠な道具である。
アーベル多様体は、任意のに係数を持つ方程式により定義することができる。従って、多様体はその体の上で定義されると言う。歴史的には、最初研究されたアーベル多様体は複素数体上で定義された多様体であった。そのようなアーベル多様体はまさに複素射影空間へ埋め込むことができ複素トーラスであることが判明している。代数体上に定義されたアーベル多様体は、特別であり、数論の観点から重要である。環の局所化のテクニックは、数体上に定義されたアーベル多様体から有限体上や様々な局所体上に定義されたアーベル多様体を自然に導く。
アーベル多様体は代数多様体のヤコビ多様体ピカール多様体のゼロ点の連結成分として)自然に現れてくる。アーベル多様体の群法則は必然的に可換となり、多様体は非特異となる。楕円曲線のアーベル多様体は次元が 1 である。アーベル多様体は小平次元が 0 である。〔小平次元は、代数多様体 V の分類に使われる次元で、V の標準バンドルC 上の超越次元で定義され、κ で表される。κ の値は、代数多様体の次元 dim(V) = n より小さい正の整数、0、-∞、の値を取る。代数多様体は、κ = dim(V) のとき、「一般型」と呼ばれ、V の自己同型群が有限群となる。代数曲線の場合は、楕円曲線の小平次元は κ = 0 となる。〕

== 歴史と動機 ==

19世紀の初頭、楕円函数の理論は楕円積分の理論に基礎を築くことに成功し、研究の方向性を明らかに指し示した。楕円積分の標準な形は、3次多項式や4次多項式の平方根を意味する。これらを高次の多項式へ置き換えたときに、いわば5次多項式に置き換えたときに、何が起きうるであろうか?
ニールス・アーベル(Niels Abel)とカール・グスタフ・ヤコブ・ヤコビ(Carl Gustav Jakob Jacobi)の仕事の中で、答えは定式化され、これは 2変数複素函数を意味し、4つ独立した ''周期'' (つまり、周期ベクトル)を持つ。これが、次元 2 のアーベル多様体(アーベル曲面)の最初の見方を与える(これを種数 2の超楕円曲線のヤコビ多様体と呼ぶ)。
アーベルとヤコビの後、アーベル函数の理論に寄与した最も重要なことをしたのは、ベルンハルト・リーマン(Bernhard Riemann)、カール・ワイエルシュトラス(Karl Weierstrass)、フェルディナント・ゲオルク・フロベニウス(Ferdinand Georg Frobenius)、アンリ・ポアンカレ(Henri Poincaré)、エミール・ピカール(Charles Émile Picard)である。問題となったことは当時非常に人気があり、既に多くの文献があった。
19世紀の末には、数学者たちはアーベル函数の研究に幾何学的方法を使い始めた。最終的には、1920年代にソロモン・レフシェッツ(Solomon Lefschetz)は複素トーラスのことばでアーベル函数の研究の基礎を築いた。彼はまた、「アーベル多様体」という名称を初めて使い始めた。1940年代に代数幾何学の言葉で現代的な基礎をこの主題に与えたのはアンドレ・ヴェイユ(André Weil)であった。
今日、アーベル多様体は数論や、力学系(さらにの研究では特に)、代数幾何学(特にピカール多様体アルバネーゼ多様体)では、非常に重要なツールになっている。〔ヤコビ多様体の元来の定義は、種数 ''g'' の代数曲線の周期行列 ''Ω'' から作られる ''g''-次元複素トーラス C^g/\Omega であり、主偏極アーベル多様体の構造を持つ。このアーベル多様体をヤコビ多様体と言う。いわば、解析的な周期写像から生成されたアーベル多様体のことである。
一方、複素トーラス C^g/\Omega=T のコホモロジーを考えると
:0\ \ \ \ \rightarrow\ \ \ \ \mathbb\ \ \ \ \rightarrow\ \ \ \ \mathcal_T\stackrel\mathcal^
*_T\rightarrow\ \ \ \ 0
から導かれる長系列
:\rightarrow H^1(T,\mathbb)\stackrelH^1(T,\mathcal_T)\rightarrow H^1(T,\mathcal^
*_T)\rightarrow H^2(T,\mathbb)\rightarrow\cdot
より導かれる
:Ker_c\simeq H^1(T,\mathcal_T)/\iota H^1(T,\mathbb)
を、Pic^0(T) とおいて、ピカール多様体(Picard variety)と定義する。ピカール多様体の双対アーベル多様体をアルバネーゼ多様体と言う。これはコホモロジー的な定義になる。この連結成分がヤコビ多様体である。


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「アーベル多様体」の詳細全文を読む




スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.