翻訳と辞書
Words near each other
・ 細胞間分泌細管
・ 細胞間基質
・ 細胞間寄生
・ 細胞間層
・ 細胞間橋
・ 細胞間消化
・ 細胞間液
・ 細胞間物質
・ 細胞間相互作用
・ 細胞間競争
細胞間結合
・ 細胞間認識
・ 細胞間質
・ 細胞間質液
・ 細胞間輸送
・ 細胞間隙
・ 細胞間隙(空間)
・ 細胞障害
・ 細胞障害性
・ 細胞障害性T細胞


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

細胞間結合 : ミニ英和和英辞書
細胞間結合[ごう]
cell junction
===========================
: [けん, ま]
 【名詞】 1. space 2. room 3. time 4. pause 
結合 : [けつごう]
  1. (n,vs) combination 2. union 3. binding 4. catenation 5. coupling 6. joining 
: [ごう]
 【名詞】 1. go (approx. 0.18l or 0.33m) 
細胞間結合 ( リダイレクト:細胞接着 ) : ウィキペディア日本語版
細胞接着[さいぼうせっちゃく]
細胞接着(さいぼうせっちゃく、英: cell adhesion、cell attachment)は、細胞同士が付着、あるいは細胞細胞外マトリックスに付着していることをさす。血液細胞のような浮遊性の細胞を除くと、多細胞生物では、個々の細胞は独立して存在することはない。すべての細胞は細胞接着し、特定の組織・器官の構造と機能を形成・維持し、コミュニケートし、感応し、修復し、個体の生存をつかさどっているのである。
なお、同じような用語に「細胞結合」(cell junction)がある。「細胞結合」と「細胞接着」の用語の上下関係は、専門家でも曖昧だが、1つの考え方は、同格の用語で、「細胞結合」は形態的な細胞の構造に重点を置き(細胞組織学の用語)、細胞接着は結合(接着)するプロセスや仕組みに重点をおいた(細胞生理生化学の用語)というものだ。
== 歴史 ==
発生生物学の歴史から入ろう。発生生物学では、数世紀にわたって観察されてきた発生過程の生命現象が、ここ数十年、現象を担うタンパク質遺伝子が同定され、顕微鏡の発達による微細な形態的観察も合わせ、分子レベルの相互作用で理解されるようになってきた。
1908年、米国・ノースカロライナ大学のウィルソン(HV. Wilson〔 HV. Wilson 〕)は、色の異なる2種類の海綿を1つ1つの細胞までバラバラにしてから混ぜると、同じ色同士の細胞が集塊を作ることを発見した。この現象を細胞選別と呼ぶ。
1955年、米国・ロチェスター大学のドイツ系アメリカ人・ホルトフレーター(Holtfreter)の有名な実験では、黒イモリの予定表皮と白イモリの神経板を、1つ1つの細胞までバラバラにしてから混ぜると、両者は混ざり合って細胞集塊を作るが、細胞集塊の中で1つ1つの細胞は移動し、やがて予定表皮細胞は予定表皮細胞同士、神経板細胞は神経板細胞同士が集まる。つまり,細胞選別の結果,同じ細胞同士を選んで細胞接着する。
発生生物学の材料として、ウニやイモリが多用されていたが、1950年代、ニワトリマウスヒトなどの動物細胞を用いた細胞培養法が確立されていく。米国・シカゴ大学のイスラエル系米国人・モスコーナA.Moscona)が、トリプシンなどのタンパク質分解酵素による細胞解離法を開発し、細胞培養法を確立していく。継代培養(英:subculture)が可能な哺乳類細胞系(cell line)、細胞株(cell strain)、細胞クローン(cell clone)が次々と樹立されていく。
1950年代後半、モスコーナA.Moscona)は、高等動物の培養細胞を用いて、細胞を浮遊状態で旋回培養すると、もとの組織に近い細胞の集塊を作ることを発見した。例えば、肝臓からの細胞浮遊液と腎臓からの細胞浮遊液を混合して旋回培養すると、一度、均一な細胞集塊をつくるが、徐々に、肝臓の細胞は肝臓の細胞同士、腎臓の細胞は腎臓の細胞同士と、同種の細胞同士の集塊を作る。これを細胞選別と呼ぶと前述した。一方、同じ種類の細胞だが、異なる動物種だと、均一の細胞集塊を作る(キメラになっている)。例えば、ニワトリの軟骨形成細胞とマウスの軟骨形成細胞の細胞浮遊液を混合して旋回培養すると、均一な細胞集塊をつくり、時間が経過しても、ニワトリ由来細胞とマウス由来細胞に分離することがない。
この、細胞選別はどのような分子が担っているのだろうか? 細胞分化のカギを握る分子ではないのか? 組織の特性を決める分子ではないのか? 発生における形態形成の主役ではないのか?
細胞は、細胞選別する前に「細胞‐細胞接着」をする。この「細胞‐細胞接着」は、非特異的な分子間引力・結合力、つまり、万能の「のり」物質が担っている、あるいは、細胞表面の+-の電気的な親和力とと考えられた時代もある。というのは、「細胞‐基質接着」では、1970年代、アミノ酸リジンのポリマーポリリジン(polylysine)を培養プラスチック容器の表面にコートし、細胞の接着性を向上させ、細胞培養を行なうことが普通に行われていた。ポリリジンは+荷電した高分子である。それで、「細胞‐細胞接着」の細胞接着も非特異的ではないかと考えられた。
しかし、非特異的な万能「のり」や電気的な親和力では、細胞接着(細胞選別)の特異性を説明しにくい。生命科学研究者のセンスとして、生化学者が抗原抗体反応酵素反応の特異性をタンパク質で解明してきた華やかな時代の影響受け、細胞生物学者も、細胞接着の特異性はタンパク質が担っていると感じるようになる。
そして、1973年、英国 王立がん研究基金リチャード・ハインズ(Richard O. Hynes)が細胞表面にあるタンパク質フィブロネクチン(細胞外マトリックスにあるタンパク質の1つ)を発見し。1976年、米国・NIH国立がん研究所ケネス・ヤマダ(K.M. Yamada)が、フィブロネクチンをまいた培養皿に細胞が接着すること、つまり、フィブロネクチンの細胞接着活性を発見した 。そして、1985年、細胞接着分子・フィブロネクチンレセプターとしてインテグリンが発見された。
「細胞‐細胞接着」を担う分子は、1976年、米国・ロックフェラー大学GM・エデルマンが、ニワトリの神経網膜の細胞‐細胞接着を担うタンパク質を発見し、CAMと命名したのが最初である。数年遅れて、カドヘリン(1983年発見)も発見された。
細胞接着は、多細胞生物の基本原理の1つで、単細胞から多細胞への進化に伴う必須の過程である。生物は、多細胞体制を構築したことで、複雑な分業が可能になり、組織器官が発達し、さらに進化が進み、多くの生物機能が獲得されていく。
というわけで、細胞接着の研究は、細胞生物学発生生物学、脳神経科学の中心的課題であり、臨床医学的には、組織形成・器官発達異常、がん、血液凝固、創傷治癒をはじめ多くの疾患と関係している。それで、基礎から応用にいたる生命科学の諸分野で活発に研究され、同じ細胞接着分子が、同じとは知らずに別の分野でも発見・命名され、結果として、同一分子にいくつかの別名をもつものが多い。「細胞接着分子」の項目を参照されたい。
なお、細胞接着は単に細胞の接着を担うだけではないことも知られている。細胞外から細胞の移動、増殖、分化、活動などすべての細胞生理をコントロールする機能分子である(アウトサイド・イン)。このことは関連する医薬品を開発する立場からすると魅力的でもある。さらに、細胞内から細胞外への調節機能(インサイド・アウト)もあり、ダイナミックな調節系を構築している。細胞間の相互作用も担い、生物学の基本原理の1つがここにある。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「細胞接着」の詳細全文を読む

英語版ウィキペディアに対照対訳語「 Cell adhesion 」があります。




スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.