翻訳と辞書
Words near each other
・ 線型汎函数
・ 線型汎関数
・ 線型演算子
・ 線型漸化式
・ 線型無関連
・ 線型独立
・ 線型独立なベクトル
・ 線型独立性
・ 線型空間
・ 線型空間の直和
線型符号
・ 線型結合
・ 線型群
・ 線型表現
・ 線型補間
・ 線型計画問題
・ 線型計画法
・ 線型論理
・ 線型近似
・ 線型連続体


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

線型符号 : ミニ英和和英辞書
線型符号[せんけいふごう]
=====================================
〔語彙分解〕的な部分一致の検索結果は以下の通りです。

: [かた]
 【名詞】 1. mold 2. mould 3. model 4. style 5. shape 6. data type 
符号 : [ふごう]
 【名詞】 1. sign 2. mark 3. symbol 
: [ごう]
  1. (n,n-suf) (1) number 2. issue 3. (2) sobriquet 4. pen-name 

線型符号 ( リダイレクト:線型符号(せんけいふごう、)とは、誤り検出訂正に使われるブロック符号の種類を指す。線型符号は他の符号に比べて、符号化と復号が効率的であるという特徴を持つ。線型符号は、伝送路上を記号列を転送する方法に適用される。したがって通信中に誤りが発生しても、一部の誤りを受信側で検出することができる。線型符号の「符号」は記号のブロックであり、本来の送るべき記号列よりも多くの記号を使って符号化されている。長さ ''n'' の線型符号は、''n'' 個の記号を含むブロックを転送する。== 定義 ==''q'' 個の元からなる有限体 F = \mathbb_q をとる。このとき ''n'' 次元線型空間 ''Fn'' の部分空間 ''C'' を線型符号という。また ''k'' = dim''F'' ''C'' とするとき、線型符号 ''C'' のことを (''n'', ''k'') 線型符号という(''n'', ''k'', ''d'') 線型符号ということもある。ここで ''d'' は最小距離を表す。なお、長さ ''n''、サイズ ''r''、最小距離 ''d'' の非線型符号を と表記することもあるが、これと混同しないよう注意が必要である。。''k'' 次元部分空間 ''C'' はその基底 ''g''1, …, ''g''''k'' ∈ ''Fn'' を指定すれば定まる。これらを並べた ''k''×''n'' 行列 ''G'' = (''g''1''t'', …, ''g''''k''''t'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。 ) : ウィキペディア日本語版
線型符号(せんけいふごう、)とは、誤り検出訂正に使われるブロック符号の種類を指す。線型符号は他の符号に比べて、符号化と復号が効率的であるという特徴を持つ。線型符号は、伝送路上を記号列を転送する方法に適用される。したがって通信中に誤りが発生しても、一部の誤りを受信側で検出することができる。線型符号の「符号」は記号のブロックであり、本来の送るべき記号列よりも多くの記号を使って符号化されている。長さ ''n'' の線型符号は、''n'' 個の記号を含むブロックを転送する。== 定義 ==''q'' 個の元からなる有限体 F = \mathbb_q をとる。このとき ''n'' 次元線型空間 ''Fn'' の部分空間 ''C'' を線型符号という。また ''k'' = dim''F'' ''C'' とするとき、線型符号 ''C'' のことを (''n'', ''k'') 線型符号という(''n'', ''k'', ''d'') 線型符号ということもある。ここで ''d'' は最小距離を表す。なお、長さ ''n''、サイズ ''r''、最小距離 ''d'' の非線型符号を と表記することもあるが、これと混同しないよう注意が必要である。。''k'' 次元部分空間 ''C'' はその基底 ''g''1, …, ''g'k'' ∈ ''Fn'' を指定すれば定まる。これらを並べた ''k''×''n'' 行列 ''G'' = (''g''1''t'', …, ''g''''k''''t'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。[せんけいふごう]
線型符号(せんけいふごう、)とは、誤り検出訂正に使われるブロック符号の種類を指す。線型符号は他の符号に比べて、符号化と復号が効率的であるという特徴を持つ。
線型符号は、伝送路上を記号列を転送する方法に適用される。したがって通信中に誤りが発生しても、一部の誤りを受信側で検出することができる。線型符号の「符号」は記号のブロックであり、本来の送るべき記号列よりも多くの記号を使って符号化されている。長さ ''n'' の線型符号は、''n'' 個の記号を含むブロックを転送する。
== 定義 ==
''q'' 個の元からなる有限体 F = \mathbb_q をとる。このとき ''n'' 次元線型空間 ''Fn'' の部分空間 ''C'' を線型符号という。また ''k'' = dim''F'' ''C'' とするとき、線型符号 ''C'' のことを (''n'', ''k'') 線型符号という〔(''n'', ''k'', ''d'') 線型符号ということもある。ここで ''d'' は最小距離を表す。なお、長さ ''n''、サイズ ''r''、最小距離 ''d'' の非線型符号を と表記することもあるが、これと混同しないよう注意が必要である。〕。''k'' 次元部分空間 ''C'' はその基底 ''g''1, …, ''g''''k'' ∈ ''Fn'' を指定すれば定まる。これらを並べた ''k''×''n'' 行列 ''G'' = (''g''1''t'', …, ''g''''k''''t'')''t'' を線型符号 ''C'' の生成行列という。定義から
:
C = \

が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで
:
C = \

となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって
:
G = (I | P), \quad H = (-P^t | I)

の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「線型符号(せんけいふごう、)とは、誤り検出訂正に使われるブロック符号の種類を指す。線型符号は他の符号に比べて、符号化と復号が効率的であるという特徴を持つ。線型符号は、伝送路上を記号列を転送する方法に適用される。したがって通信中に誤りが発生しても、一部の誤りを受信側で検出することができる。線型符号の「符号」は記号のブロックであり、本来の送るべき記号列よりも多くの記号を使って符号化されている。長さ ''n'' の線型符号は、''n'' 個の記号を含むブロックを転送する。== 定義 ==''q'' 個の元からなる有限体 F = \mathbb_q をとる。このとき ''n'' 次元線型空間 ''Fn'' の部分空間 ''C'' を線型符号という。また ''k'' = dim''F'' ''C'' とするとき、線型符号 ''C'' のことを (''n'', ''k'') 線型符号という(''n'', ''k'', ''d'') 線型符号ということもある。ここで ''d'' は最小距離を表す。なお、長さ ''n''、サイズ ''r''、最小距離 ''d'' の非線型符号を と表記することもあるが、これと混同しないよう注意が必要である。。''k'' 次元部分空間 ''C'' はその基底 ''g''1, …, ''g''''k'' ∈ ''Fn'' を指定すれば定まる。これらを並べた ''k''×''n'' 行列 ''G'' = (''g''1''t'', …, ''g''''k''''t'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。」の詳細全文を読む
k'' ∈ ''Fn'' を指定すれば定まる。これらを並べた ''k''×''n'' 行列 ''G'' = (''g''1''t'', …, ''g'k''''t'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。[せんけいふごう]

線型符号(せんけいふごう、)とは、誤り検出訂正に使われるブロック符号の種類を指す。線型符号は他の符号に比べて、符号化と復号が効率的であるという特徴を持つ。
線型符号は、伝送路上を記号列を転送する方法に適用される。したがって通信中に誤りが発生しても、一部の誤りを受信側で検出することができる。線型符号の「符号」は記号のブロックであり、本来の送るべき記号列よりも多くの記号を使って符号化されている。長さ ''n'' の線型符号は、''n'' 個の記号を含むブロックを転送する。
== 定義 ==
''q'' 個の元からなる有限体 F = \mathbb_q をとる。このとき ''n'' 次元線型空間 ''Fn'' の部分空間 ''C'' を線型符号という。また ''k'' = dim''F'' ''C'' とするとき、線型符号 ''C'' のことを (''n'', ''k'') 線型符号という〔(''n'', ''k'', ''d'') 線型符号ということもある。ここで ''d'' は最小距離を表す。なお、長さ ''n''、サイズ ''r''、最小距離 ''d'' の非線型符号を と表記することもあるが、これと混同しないよう注意が必要である。〕。''k'' 次元部分空間 ''C'' はその基底 ''g''1, …, ''g''''k'' ∈ ''Fn'' を指定すれば定まる。これらを並べた ''k''×''n'' 行列 ''G'' = (''g''1''t'', …, ''g''''k''''t'')''t'' を線型符号 ''C'' の生成行列という。定義から
:
C = \

が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで
:
C = \

となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって
:
G = (I | P), \quad H = (-P^t | I)

の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「線型符号(せんけいふごう、)とは、誤り検出訂正に使われるブロック符号の種類を指す。線型符号は他の符号に比べて、符号化と復号が効率的であるという特徴を持つ。線型符号は、伝送路上を記号列を転送する方法に適用される。したがって通信中に誤りが発生しても、一部の誤りを受信側で検出することができる。線型符号の「符号」は記号のブロックであり、本来の送るべき記号列よりも多くの記号を使って符号化されている。長さ ''n'' の線型符号は、''n'' 個の記号を含むブロックを転送する。== 定義 ==''q'' 個の元からなる有限体 F = \mathbb_q をとる。このとき ''n'' 次元線型空間 ''Fn'' の部分空間 ''C'' を線型符号という。また ''k'' = dim''F'' ''C'' とするとき、線型符号 ''C'' のことを (''n'', ''k'') 線型符号という(''n'', ''k'', ''d'') 線型符号ということもある。ここで ''d'' は最小距離を表す。なお、長さ ''n''、サイズ ''r''、最小距離 ''d'' の非線型符号を と表記することもあるが、これと混同しないよう注意が必要である。。''k'' 次元部分空間 ''C'' はその基底 ''g''1, …, ''g''''k'' ∈ ''Fn'' を指定すれば定まる。これらを並べた ''k''×''n'' 行列 ''G'' = (''g''1''t'', …, ''g''''k''''t'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。」の詳細全文を読む
k't'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。[せんけいふごう]
線型符号(せんけいふごう、)とは、誤り検出訂正に使われるブロック符号の種類を指す。線型符号は他の符号に比べて、符号化と復号が効率的であるという特徴を持つ。
線型符号は、伝送路上を記号列を転送する方法に適用される。したがって通信中に誤りが発生しても、一部の誤りを受信側で検出することができる。線型符号の「符号」は記号のブロックであり、本来の送るべき記号列よりも多くの記号を使って符号化されている。長さ ''n'' の線型符号は、''n'' 個の記号を含むブロックを転送する。
== 定義 ==
''q'' 個の元からなる有限体 F = \mathbb_q をとる。このとき ''n'' 次元線型空間 ''Fn'' の部分空間 ''C'' を線型符号という。また ''k'' = dim''F'' ''C'' とするとき、線型符号 ''C'' のことを (''n'', ''k'') 線型符号という〔(''n'', ''k'', ''d'') 線型符号ということもある。ここで ''d'' は最小距離を表す。なお、長さ ''n''、サイズ ''r''、最小距離 ''d'' の非線型符号を と表記することもあるが、これと混同しないよう注意が必要である。〕。''k'' 次元部分空間 ''C'' はその基底 ''g''1, …, ''g''''k'' ∈ ''Fn'' を指定すれば定まる。これらを並べた ''k''×''n'' 行列 ''G'' = (''g''1''t'', …, ''g''''k''''t'')''t'' を線型符号 ''C'' の生成行列という。定義から
:
C = \

が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで
:
C = \

となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって
:
G = (I | P), \quad H = (-P^t | I)

の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「線型符号(せんけいふごう、)とは、誤り検出訂正に使われるブロック符号の種類を指す。線型符号は他の符号に比べて、符号化と復号が効率的であるという特徴を持つ。線型符号は、伝送路上を記号列を転送する方法に適用される。したがって通信中に誤りが発生しても、一部の誤りを受信側で検出することができる。線型符号の「符号」は記号のブロックであり、本来の送るべき記号列よりも多くの記号を使って符号化されている。長さ ''n'' の線型符号は、''n'' 個の記号を含むブロックを転送する。== 定義 ==''q'' 個の元からなる有限体 F = \mathbb_q をとる。このとき ''n'' 次元線型空間 ''Fn'' の部分空間 ''C'' を線型符号という。また ''k'' = dim''F'' ''C'' とするとき、線型符号 ''C'' のことを (''n'', ''k'') 線型符号という(''n'', ''k'', ''d'') 線型符号ということもある。ここで ''d'' は最小距離を表す。なお、長さ ''n''、サイズ ''r''、最小距離 ''d'' の非線型符号を と表記することもあるが、これと混同しないよう注意が必要である。。''k'' 次元部分空間 ''C'' はその基底 ''g''1, …, ''g''''k'' ∈ ''Fn'' を指定すれば定まる。これらを並べた ''k''×''n'' 行列 ''G'' = (''g''1''t'', …, ''g''''k''''t'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。」の詳細全文を読む
t'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。[せんけいふごう]
線型符号(せんけいふごう、)とは、誤り検出訂正に使われるブロック符号の種類を指す。線型符号は他の符号に比べて、符号化と復号が効率的であるという特徴を持つ。
線型符号は、伝送路上を記号列を転送する方法に適用される。したがって通信中に誤りが発生しても、一部の誤りを受信側で検出することができる。線型符号の「符号」は記号のブロックであり、本来の送るべき記号列よりも多くの記号を使って符号化されている。長さ ''n'' の線型符号は、''n'' 個の記号を含むブロックを転送する。
== 定義 ==
''q'' 個の元からなる有限体 F = \mathbb_q をとる。このとき ''n'' 次元線型空間 ''Fn'' の部分空間 ''C'' を線型符号という。また ''k'' = dim''F'' ''C'' とするとき、線型符号 ''C'' のことを (''n'', ''k'') 線型符号という〔(''n'', ''k'', ''d'') 線型符号ということもある。ここで ''d'' は最小距離を表す。なお、長さ ''n''、サイズ ''r''、最小距離 ''d'' の非線型符号を と表記することもあるが、これと混同しないよう注意が必要である。〕。''k'' 次元部分空間 ''C'' はその基底 ''g''1, …, ''g''''k'' ∈ ''Fn'' を指定すれば定まる。これらを並べた ''k''×''n'' 行列 ''G'' = (''g''1''t'', …, ''g''''k''''t'')''t'' を線型符号 ''C'' の生成行列という。定義から
:
C = \

が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで
:
C = \

となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって
:
G = (I | P), \quad H = (-P^t | I)

の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「線型符号(せんけいふごう、)とは、誤り検出訂正に使われるブロック符号の種類を指す。線型符号は他の符号に比べて、符号化と復号が効率的であるという特徴を持つ。線型符号は、伝送路上を記号列を転送する方法に適用される。したがって通信中に誤りが発生しても、一部の誤りを受信側で検出することができる。線型符号の「符号」は記号のブロックであり、本来の送るべき記号列よりも多くの記号を使って符号化されている。長さ ''n'' の線型符号は、''n'' 個の記号を含むブロックを転送する。== 定義 ==''q'' 個の元からなる有限体 F = \mathbb_q をとる。このとき ''n'' 次元線型空間 ''Fn'' の部分空間 ''C'' を線型符号という。また ''k'' = dim''F'' ''C'' とするとき、線型符号 ''C'' のことを (''n'', ''k'') 線型符号という(''n'', ''k'', ''d'') 線型符号ということもある。ここで ''d'' は最小距離を表す。なお、長さ ''n''、サイズ ''r''、最小距離 ''d'' の非線型符号を と表記することもあるが、これと混同しないよう注意が必要である。。''k'' 次元部分空間 ''C'' はその基底 ''g''1, …, ''g''''k'' ∈ ''Fn'' を指定すれば定まる。これらを並べた ''k''×''n'' 行列 ''G'' = (''g''1''t'', …, ''g''''k''''t'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。」の詳細全文を読む
k'' ∈ ''Fn'' を指定すれば定まる。これらを並べた ''k''×''n'' 行列 ''G'' = (''g''1''t'', …, ''g'k''''t'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。">ウィキペディア(Wikipedia)』
ウィキペディアで「線型符号(せんけいふごう、)とは、誤り検出訂正に使われるブロック符号の種類を指す。線型符号は他の符号に比べて、符号化と復号が効率的であるという特徴を持つ。線型符号は、伝送路上を記号列を転送する方法に適用される。したがって通信中に誤りが発生しても、一部の誤りを受信側で検出することができる。線型符号の「符号」は記号のブロックであり、本来の送るべき記号列よりも多くの記号を使って符号化されている。長さ ''n'' の線型符号は、''n'' 個の記号を含むブロックを転送する。== 定義 ==''q'' 個の元からなる有限体 F = \mathbb_q をとる。このとき ''n'' 次元線型空間 ''Fn'' の部分空間 ''C'' を線型符号という。また ''k'' = dim''F'' ''C'' とするとき、線型符号 ''C'' のことを (''n'', ''k'') 線型符号という(''n'', ''k'', ''d'') 線型符号ということもある。ここで ''d'' は最小距離を表す。なお、長さ ''n''、サイズ ''r''、最小距離 ''d'' の非線型符号を と表記することもあるが、これと混同しないよう注意が必要である。。''k'' 次元部分空間 ''C'' はその基底 ''g''1, …, ''g''''k'' ∈ ''Fn'' を指定すれば定まる。これらを並べた ''k''×''n'' 行列 ''G'' = (''g''1''t'', …, ''g''''k''''t'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。」の詳細全文を読む
k't'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。">ウィキペディア(Wikipedia)』
ウィキペディアで「線型符号(せんけいふごう、)とは、誤り検出訂正に使われるブロック符号の種類を指す。線型符号は他の符号に比べて、符号化と復号が効率的であるという特徴を持つ。線型符号は、伝送路上を記号列を転送する方法に適用される。したがって通信中に誤りが発生しても、一部の誤りを受信側で検出することができる。線型符号の「符号」は記号のブロックであり、本来の送るべき記号列よりも多くの記号を使って符号化されている。長さ ''n'' の線型符号は、''n'' 個の記号を含むブロックを転送する。== 定義 ==''q'' 個の元からなる有限体 F = \mathbb_q をとる。このとき ''n'' 次元線型空間 ''Fn'' の部分空間 ''C'' を線型符号という。また ''k'' = dim''F'' ''C'' とするとき、線型符号 ''C'' のことを (''n'', ''k'') 線型符号という(''n'', ''k'', ''d'') 線型符号ということもある。ここで ''d'' は最小距離を表す。なお、長さ ''n''、サイズ ''r''、最小距離 ''d'' の非線型符号を と表記することもあるが、これと混同しないよう注意が必要である。。''k'' 次元部分空間 ''C'' はその基底 ''g''1, …, ''g''''k'' ∈ ''Fn'' を指定すれば定まる。これらを並べた ''k''×''n'' 行列 ''G'' = (''g''1''t'', …, ''g''''k''''t'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。」の詳細全文を読む
t'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。">ウィキペディア(Wikipedia)』
ウィキペディアで「線型符号(せんけいふごう、)とは、誤り検出訂正に使われるブロック符号の種類を指す。線型符号は他の符号に比べて、符号化と復号が効率的であるという特徴を持つ。線型符号は、伝送路上を記号列を転送する方法に適用される。したがって通信中に誤りが発生しても、一部の誤りを受信側で検出することができる。線型符号の「符号」は記号のブロックであり、本来の送るべき記号列よりも多くの記号を使って符号化されている。長さ ''n'' の線型符号は、''n'' 個の記号を含むブロックを転送する。== 定義 ==''q'' 個の元からなる有限体 F = \mathbb_q をとる。このとき ''n'' 次元線型空間 ''Fn'' の部分空間 ''C'' を線型符号という。また ''k'' = dim''F'' ''C'' とするとき、線型符号 ''C'' のことを (''n'', ''k'') 線型符号という(''n'', ''k'', ''d'') 線型符号ということもある。ここで ''d'' は最小距離を表す。なお、長さ ''n''、サイズ ''r''、最小距離 ''d'' の非線型符号を と表記することもあるが、これと混同しないよう注意が必要である。。''k'' 次元部分空間 ''C'' はその基底 ''g''1, …, ''g''''k'' ∈ ''Fn'' を指定すれば定まる。これらを並べた ''k''×''n'' 行列 ''G'' = (''g''1''t'', …, ''g''''k''''t'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。」の詳細全文を読む
k'' ∈ ''Fn'' を指定すれば定まる。これらを並べた ''k''×''n'' 行列 ''G'' = (''g''1''t'', …, ''g'k''''t'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。">ウィキペディアで「線型符号(せんけいふごう、)とは、誤り検出訂正に使われるブロック符号の種類を指す。線型符号は他の符号に比べて、符号化と復号が効率的であるという特徴を持つ。線型符号は、伝送路上を記号列を転送する方法に適用される。したがって通信中に誤りが発生しても、一部の誤りを受信側で検出することができる。線型符号の「符号」は記号のブロックであり、本来の送るべき記号列よりも多くの記号を使って符号化されている。長さ ''n'' の線型符号は、''n'' 個の記号を含むブロックを転送する。== 定義 ==''q'' 個の元からなる有限体 F = \mathbb_q をとる。このとき ''n'' 次元線型空間 ''Fn'' の部分空間 ''C'' を線型符号という。また ''k'' = dim''F'' ''C'' とするとき、線型符号 ''C'' のことを (''n'', ''k'') 線型符号という(''n'', ''k'', ''d'') 線型符号ということもある。ここで ''d'' は最小距離を表す。なお、長さ ''n''、サイズ ''r''、最小距離 ''d'' の非線型符号を と表記することもあるが、これと混同しないよう注意が必要である。。''k'' 次元部分空間 ''C'' はその基底 ''g''1, …, ''g''''k'' ∈ ''Fn'' を指定すれば定まる。これらを並べた ''k''×''n'' 行列 ''G'' = (''g''1''t'', …, ''g''''k''''t'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。」の詳細全文を読む
k't'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。">ウィキペディアで「線型符号(せんけいふごう、)とは、誤り検出訂正に使われるブロック符号の種類を指す。線型符号は他の符号に比べて、符号化と復号が効率的であるという特徴を持つ。線型符号は、伝送路上を記号列を転送する方法に適用される。したがって通信中に誤りが発生しても、一部の誤りを受信側で検出することができる。線型符号の「符号」は記号のブロックであり、本来の送るべき記号列よりも多くの記号を使って符号化されている。長さ ''n'' の線型符号は、''n'' 個の記号を含むブロックを転送する。== 定義 ==''q'' 個の元からなる有限体 F = \mathbb_q をとる。このとき ''n'' 次元線型空間 ''Fn'' の部分空間 ''C'' を線型符号という。また ''k'' = dim''F'' ''C'' とするとき、線型符号 ''C'' のことを (''n'', ''k'') 線型符号という(''n'', ''k'', ''d'') 線型符号ということもある。ここで ''d'' は最小距離を表す。なお、長さ ''n''、サイズ ''r''、最小距離 ''d'' の非線型符号を と表記することもあるが、これと混同しないよう注意が必要である。。''k'' 次元部分空間 ''C'' はその基底 ''g''1, …, ''g''''k'' ∈ ''Fn'' を指定すれば定まる。これらを並べた ''k''×''n'' 行列 ''G'' = (''g''1''t'', …, ''g''''k''''t'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。」の詳細全文を読む
t'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。">ウィキペディアで「線型符号(せんけいふごう、)とは、誤り検出訂正に使われるブロック符号の種類を指す。線型符号は他の符号に比べて、符号化と復号が効率的であるという特徴を持つ。線型符号は、伝送路上を記号列を転送する方法に適用される。したがって通信中に誤りが発生しても、一部の誤りを受信側で検出することができる。線型符号の「符号」は記号のブロックであり、本来の送るべき記号列よりも多くの記号を使って符号化されている。長さ ''n'' の線型符号は、''n'' 個の記号を含むブロックを転送する。== 定義 ==''q'' 個の元からなる有限体 F = \mathbb_q をとる。このとき ''n'' 次元線型空間 ''Fn'' の部分空間 ''C'' を線型符号という。また ''k'' = dim''F'' ''C'' とするとき、線型符号 ''C'' のことを (''n'', ''k'') 線型符号という(''n'', ''k'', ''d'') 線型符号ということもある。ここで ''d'' は最小距離を表す。なお、長さ ''n''、サイズ ''r''、最小距離 ''d'' の非線型符号を と表記することもあるが、これと混同しないよう注意が必要である。。''k'' 次元部分空間 ''C'' はその基底 ''g''1, …, ''g'k'' ∈ ''Fn'' を指定すれば定まる。これらを並べた ''k''×''n'' 行列 ''G'' = (''g''1''t'', …, ''g''''k''''t'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。」の詳細全文を読む
k'' ∈ ''Fn'' を指定すれば定まる。これらを並べた ''k''×''n'' 行列 ''G'' = (''g''1''t'', …, ''g'k''''t'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。」の詳細全文を読む
k't'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。」の詳細全文を読む
t'')''t'' を線型符号 ''C'' の生成行列という。定義から: C = \が成り立つ。また ''k'' 次元部分空間 ''C'' は連立一次方程式で指定しても定まる。そこで: C = \となる(''n'' − ''k'')×''n'' 行列 ''H'' を線型符号 ''C'' のパリティ検査行列という。定義から ''GHt'' = 0 が成り立つ。これらの行列は適当に線型符号 ''C'' の基底を取りなおすことによって: G = (I | P), \quad H = (-P^t | I)の形にできる。このような ''G'', ''H'' を組織符号形式という。このとき符号化前の ''k'' 個の記号からなる情報系列がそのまま符号語に現れているので、容易に復号ができる。符号語の残り ''n'' − ''k'' 個の記号はパリティ検査記号と呼ばれる。」
の詳細全文を読む




スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.