|
可換環論において、正則局所環(せいそくきょくしょかん、)とは、ネーター局所環 であって、剰余体 について を満たすような環である。ただし左辺は のクルル次元、右辺は ベクトル空間としての次元である。右辺の数はしばしば埋め込み次元()と呼ばれ と書かれることもある。 正則局所環は代数幾何学において代数多様体の非特異点に対応するため中心的な役割を占める。 ネーター局所環については次の包含関係が成り立つ。 : ⊃ コーエン・マコーレー環 ⊃ ゴレンシュタイン環 ⊃ ⊃ 正則局所環 == 例 == 以下ではクルル次元のことを単に次元と呼ぶ。 * すべての体は0次元の正則局所環であり、0次元の正則局所環は体である。 * すべての離散付値環は1次元の正則局所環であり、1次元の正則局所環は離散付値環である。特に が体で を不定元とするとき形式的冪級数環 は1次元の正則局所環である。 * より一般に が体で を不定元とするとき形式的冪級数環 は 次元の正則局所環である。 * を有理素数とすれば、は離散付値環ゆえ正則局所環であり、体を含まない。 * を整数環とし を不定元とすると局所化 は2次元正則局所環で体を含まない。 * により完備な等標数の 次元正則局所環で体を含むものはある体上の形式的冪級数環である。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「正則局所環」の詳細全文を読む スポンサード リンク
|