|
数学においてリーマン球面(リーマンきゅうめん、)は、無限遠点を一点追加して複素平面を拡張する一手法であり、ここに無限遠点 は、少なくともある意味で整合的かつ有用である。 19 世紀の数学者ベルンハルト・リーマンから名付けられた。 これはまた、以下の通りにも呼ばれる。 * 複素射影直線と言い、CP1 と書く。 * 拡張複素平面と言い、 または C ∪ と書く。 純代数的には、無限遠点を追加した複素数全体は、拡張複素数として知られる数体系を構成する。無限を伴う算術は、通常の代数規則すべてに従う訳ではないので、拡張複素数全体は体を構成しない。しかしリーマン球面は、幾何学的また解析学的に無限遠においてさえもよく振舞い、リーマン面とも呼ばれる 1-次元複素多様体をなす。 複素解析において、リーマン球面は有理型関数の洗練された理論で重要な役割を果たす。 リーマン球面は、射影幾何学や代数幾何学では、複素多様体、射影空間、代数多様体の根源的な事例として常に登場する。 リーマン球面はまた、量子力学その他の物理学の分野等、解析学と幾何学に依存する他の学問分野においても、有用性を発揮している。 == 拡張複素数 == 拡張複素数 (extended complex numbers) は複素数 C と ∞ からなる。拡張複素数の集合は C ∪ と書け、しばしば文字 C に追加の装飾を施して表記される。例えば : 幾何学的には、拡張複素数の集合はリーマン球面 (Riemann sphere) (あるいは拡張複素平面 (extended complex plane))と呼ばれる。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「リーマン球面」の詳細全文を読む スポンサード リンク
|