翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

turbofan : ウィキペディア英語版
turbofan


The turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a portmanteau of "turbine" and "fan": the ''turbo'' portion refers to a gas turbine engine which takes mechanical energy from combustion, and the ''fan'', a ducted fan that uses the mechanical energy from the gas turbine to accelerate air rearwards. Thus, whereas all the air taken in by a turbojet passes through the turbine (through the combustion chamber), in a turbofan some of that air bypasses the turbine. A turbofan thus can be thought of as a turbojet being used to drive a ducted fan, with both of those contributing to the thrust. The ratio of the mass-flow of air bypassing the engine core compared to the mass-flow of air passing through the core is referred to as the bypass ratio. The engine produces thrust through a combination of these two portions working in concert; engines that use more jet thrust relative to fan thrust are known as ''low bypass turbofans'', conversely those that have considerably more fan thrust than jet thrust are known as ''high bypass''. Most commercial aviation jet engines in use today are of the high-bypass type, and most modern military fighter engines are low-bypass. Afterburners are not used on high-bypass turbofan engines but may be used on either low-bypass turbofan or turbojet engines.
Most of the air flow through a high-bypass turbofan is low-velocity bypass flow: even when combined with the much higher velocity engine exhaust, the average exhaust velocity is considerably lower than in a pure turbojet. Turbojet engine noise is predominately jet noise from the high exhaust velocity, therefore turbofan engines are significantly quieter than a pure-jet of the same thrust with jet noise no longer the predominant source. Other noise sources are the fan, compressor and turbine.〔"Softtly, softly towards the quiet jet" Michael J.T.Smith, New Scientist, 19 February 1970, Figure 5〕 Jet noise is reduced with chevrons, sawtooth patterns on the exhaust nozzles,〔http://www.afmc.org.cn/13thacfm/invited/201.pdf〕 on the Rolls-Royce Trent 1000 and General Electric GEnx engines used on the Boeing 787.
Since the efficiency of propulsion is a function of the relative airspeed of the exhaust to the surrounding air, propellers are most efficient for low speed, pure jets for high speeds, and ducted fans in the middle. Turbofans are thus the most efficient engines in the range of speeds from about , the speed at which most commercial aircraft operate.〔(【引用サイトリンク】title= Turbofan Engine )〕〔, pp. 228–230.〕 Turbofans retain an efficiency edge over pure jets at low supersonic speeds up to roughly Mach 1.6, but have also been found to be efficient when used with continuous afterburner at Mach 3 and above.
The vast majority of turbofans follow the same basic design, with a large fan at the front of the engine and a relatively small jet engine behind it. There have been a number of variations on this design, however, including rear-mounted fans which can easily be added to an existing pure-jet design, or designs that combine a low-pressure turbine and a fan stage in a single rear-mounted unit.
==Early turbofans==

Early turbojet engines were not very fuel-efficient as their overall pressure ratio and turbine inlet temperature were severely limited by the technology available at the time. In 1939-1941 Soviet designer Arkhip Lyulka elaborated the design for the world's first turbofan engine, and acquired a patent for this new invention on April 22, 1941. Although several prototypes were built and ready for state tests, Lyulka was in 1941 forced to abandon his research and evacuate to the Urals following the Nazi invasion of the Soviet Union. So the first tested turbofan was apparently the German Daimler-Benz DB 670 (designated as the 109-007 by the RLM) which was operated on its testbed on April 1, 1943. The engine was abandoned later while the war went on and problems could not be solved. The British wartime Metrovick F.2 axial flow jet was given a fan, as the Metrovick F.3 in 1943, to create the first British turbofan.
Improved materials, and the introduction of twin compressors such as in the Bristol Olympus and the later Pratt & Whitney JT3C engine, increased the overall pressure ratio and thus the thermodynamic efficiency of engines, but they also led to a poor propulsive efficiency, as pure turbojets have a high specific thrust/high velocity exhaust better suited to supersonic flight.
The original low-bypass turbofan engines were designed to improve propulsive efficiency by reducing the exhaust velocity to a value closer to that of the aircraft. The Rolls-Royce Conway, the world's first production turbofan, had a bypass ratio of 0.3, similar to the modern General Electric F404 fighter engine. Civilian turbofan engines of the 1960s, such as the Pratt & Whitney JT8D and the Rolls-Royce Spey had bypass ratios closer to 1, and were similar to their military equivalents.
The unusual General Electric CF700 turbofan engine was developed as an aft-fan engine with a 2.0 bypass ratio. This was derived from the General Electric J85/CJ610 turbojet (2,850 lbf or 12,650 N) to power the larger Rockwell Sabreliner 75/80 model aircraft, as well as the Dassault Falcon 20 with about a 50% increase in thrust (4,200 lbf or 18,700 N). The CF700 was the first small turbofan in the world to be certified by the Federal Aviation Administration (FAA). There are now over 400 CF700 aircraft in operation around the world, with an experience base of over 10 million service hours. The CF700 turbofan engine was also used to train Moon-bound astronauts in Project Apollo as the powerplant for the Lunar Landing Research Vehicle. The CJ805-23 was a similar, but larger, design.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「turbofan」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.