翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

runway : ウィキペディア英語版
According to the International Civil Aviation Organization (ICAO), a runway is a "defined rectangular area on a land aerodrome prepared for the landing and takeoff of aircraft". Runways may be a man-made surface (often asphalt, concrete, or a mixture of both) or a natural surface (grass, dirt, gravel, ice, or salt).== Naming ==Runways are named by a number between 01 and 36, which is generally the magnetic azimuth of the runway's heading in decadegrees: a runway numbered 09 points east (90°), runway 18 is south (180°), runway 27 points west (270°) and runway 36 points to the north (360° rather than 0°).(Federal Aviation Administration Aeronautical Information Manual, Chapter 2, Section 3 Airport Marking Aids and Signs part 3b ) When taking off from or landing on runway 09, a plane would be heading 90° (east). However, runways in North America that lie within the Northern Domestic Airspace of Canada are numbered relative to true north because proximity to the magnetic North Pole makes the magnetic declination large.(RAC – 2.0 AIRSPACE – REQUIREMENTS AND PROCEDURES – 2.2.1 Northern Domestic Airspace ) from Transport CanadaA runway can normally be used in both directions, and is named for each direction separately: e.g., "runway 33" in one direction is "runway 15" when used in the other. The two numbers usually differ by 18 (= 180°).If there is more than one runway pointing in the same direction (parallel runways), each runway is identified by appending Left (L), Center (C) and Right (R) to the number to identify its position (when facing its direction) — for example, Runways One Five Left (15L), One Five Center (15C), and One Five Right (15R). Runway Zero Three Left (03L) becomes Runway Two One Right (21R) when used in the opposite direction (derived from adding 18 to the original number for the 180 degrees when approaching from the opposite direction). In some countries, if parallel runways are too close to each other, regulations mandate that only one runway may be used at a time under certain conditions (usually adverse weather).At large airports with four or more parallel runways (for example, at Los Angeles, Detroit Metropolitan Wayne County, Hartsfield-Jackson Atlanta, Denver, Dallas-Fort Worth and Orlando) some runway identifiers are shifted by 10 degrees to avoid the ambiguity that would result with more than three parallel runways. For example, in Los Angeles, this system results in runways 6L, 6R, 7L, and 7R, even though all four runways are actually parallel (approximately 69 degrees). At Dallas/Fort Worth International Airport, there are five parallel runways, named 17L, 17C, 17R, 18L, and 18R, all oriented at a heading of 175.4 degrees. Occasionally, an airport with only 3 parallel runways may use different runway identifiers, for example when a third parallel runway was opened at Phoenix Sky Harbor International Airport in 2000 to the south of existing 8R/26L, rather than confusingly becoming the "new" 8R/26L it was instead designated 7R/25L, with the former 8R/26L becoming 7L/25R and 8L/26R becoming 8/26.For clarity in radio communications, each digit in the runway name is pronounced individually: runway three six, runway one four, etc. A leading zero, for example in "runway zero six" or "runway zero one left", is included for all ICAO and some U.S. military airports (such as Edwards Air Force Base). However, most U.S. civil aviation airports drop the leading zero as required by FAA regulation. This also includes some military airfields such as Cairns Army Airfield. This American anomaly may lead to inconsistencies in conversations between American pilots and controllers in other countries. It is very common in a country such as Canada for a controller to clear an incoming American aircraft to, for example, runway 04, and the pilot read back the clearance as runway 4. In flight simulation programs those of American origin might apply U.S. usage to airports around the world. For example, runway 05 at Halifax will appear on the program as the single digit 5 rather than 05.Runway designations change over time because the magnetic poles slowly drift on the Earth's surface and the magnetic bearing will change. Depending on the airport location and how much drift takes place, it may be necessary over time to change the runway designation. As runways are designated with headings rounded to the nearest 10 degrees, this will affect some runways more than others. For example, if the magnetic heading of a runway is 233 degrees, it would be designated Runway 23. If the magnetic heading changed downwards by 5 degrees to 228, the Runway would still be Runway 23. If on the other hand the original magnetic heading was 226 (Runway 23), and the heading decreased by only 2 degrees to 224, the runway should become Runway 22. Because the drift itself is quite slow, runway designation changes are uncommon, and not welcomed, as they require an accompanying change in aeronautical charts and descriptive documents. When runway designations do change, especially at major airports, it is often changed at night as taxiway signs need to be changed and the huge numbers at each end of the runway need to be repainted to the new runway designators. In July 2009 for example, London Stansted Airport in the United Kingdom changed its runway designations from 05/23 to 04/22 during the night.For fixed-wing aircraft it is advantageous to perform takeoffs and landings into the wind to reduce takeoff or landing roll and reduce the ground speed needed to attain flying speed. Larger airports usually have several runways in different directions, so that one can be selected that is most nearly aligned with the wind. Airports with one runway are often constructed to be aligned with the prevailing wind. Compiling a wind rose is in fact one of the preliminary steps taken in constructing airport runways.() Retrieved on 2012-02-24. Note that wind direction is given as the direction the wind is coming ''from'': a plane taking off from runway 09 would be facing east, directly into an "east wind" blowing from 090 degrees.== Declared distances == Runway dimensions vary from as small as long and wide in smaller general aviation airports, to long and wide at large international airports built to accommodate the largest jets, to the huge lake bed runway 17/35 at Edwards Air Force Base in California – a landing site for the retired Space Shuttle.. Federal Aviation Administration.Takeoff and landing distances available are given using one of the following terms:;TORA:Takeoff Run Available – The length of runway declared available and suitable for the ground run of an airplane taking off.;TODA:Takeoff Distance Available – The length of the takeoff run available plus the length of the clearway, if clearway is provided.:(The clearway length allowed must lie within the aerodrome or airport boundary. According to the Federal Aviation Regulations and Joint Aviation Requirements (JAR) TODA is the lesser of TORA plus clearway or 1.5 times TORA).;ASDA: Accelerate-Stop Distance Available – The length of the takeoff run available plus the length of the stopway, if stopway is provided.;LDA: Landing Distance Available – The length of runway that is declared available and suitable for the ground run of an airplane landing.;EMDA : Emergency Distance Available – LDA (or TORA) plus a stopway.


According to the International Civil Aviation Organization (ICAO), a runway is a "defined rectangular area on a land aerodrome prepared for the landing and takeoff of aircraft". Runways may be a man-made surface (often asphalt, concrete, or a mixture of both) or a natural surface (grass, dirt, gravel, ice, or salt).
== Naming ==

Runways are named by a number between 01 and 36, which is generally the magnetic azimuth of the runway's heading in decadegrees: a runway numbered 09 points east (90°), runway 18 is south (180°), runway 27 points west (270°) and runway 36 points to the north (360° rather than 0°).〔(Federal Aviation Administration Aeronautical Information Manual, Chapter 2, Section 3 Airport Marking Aids and Signs part 3b )〕 When taking off from or landing on runway 09, a plane would be heading 90° (east). However, runways in North America that lie within the Northern Domestic Airspace of Canada are numbered relative to true north because proximity to the magnetic North Pole makes the magnetic declination large.〔(RAC – 2.0 AIRSPACE – REQUIREMENTS AND PROCEDURES – 2.2.1 Northern Domestic Airspace ) from Transport Canada
A runway can normally be used in both directions, and is named for each direction separately: e.g., "runway 33" in one direction is "runway 15" when used in the other. The two numbers usually differ by 18 (= 180°).
If there is more than one runway pointing in the same direction (parallel runways), each runway is identified by appending Left (L), Center (C) and Right (R) to the number to identify its position (when facing its direction) — for example, Runways One Five Left (15L), One Five Center (15C), and One Five Right (15R). Runway Zero Three Left (03L) becomes Runway Two One Right (21R) when used in the opposite direction (derived from adding 18 to the original number for the 180 degrees when approaching from the opposite direction). In some countries, if parallel runways are too close to each other, regulations mandate that only one runway may be used at a time under certain conditions (usually adverse weather).
At large airports with four or more parallel runways (for example, at Los Angeles, Detroit Metropolitan Wayne County, Hartsfield-Jackson Atlanta, Denver, Dallas-Fort Worth and Orlando) some runway identifiers are shifted by 10 degrees to avoid the ambiguity that would result with more than three parallel runways. For example, in Los Angeles, this system results in runways 6L, 6R, 7L, and 7R, even though all four runways are actually parallel (approximately 69 degrees). At Dallas/Fort Worth International Airport, there are five parallel runways, named 17L, 17C, 17R, 18L, and 18R, all oriented at a heading of 175.4 degrees. Occasionally, an airport with only 3 parallel runways may use different runway identifiers, for example when a third parallel runway was opened at Phoenix Sky Harbor International Airport in 2000 to the south of existing 8R/26L, rather than confusingly becoming the "new" 8R/26L it was instead designated 7R/25L, with the former 8R/26L becoming 7L/25R and 8L/26R becoming 8/26.
For clarity in radio communications, each digit in the runway name is pronounced individually: runway three six, runway one four, etc. A leading zero, for example in "runway zero six" or "runway zero one left", is included for all ICAO and some U.S. military airports (such as Edwards Air Force Base). However, most U.S. civil aviation airports drop the leading zero as required by FAA regulation. This also includes some military airfields such as Cairns Army Airfield. This American anomaly may lead to inconsistencies in conversations between American pilots and controllers in other countries. It is very common in a country such as Canada for a controller to clear an incoming American aircraft to, for example, runway 04, and the pilot read back the clearance as runway 4. In flight simulation programs those of American origin might apply U.S. usage to airports around the world. For example, runway 05 at Halifax will appear on the program as the single digit 5 rather than 05.
Runway designations change over time because the magnetic poles slowly drift on the Earth's surface and the magnetic bearing will change. Depending on the airport location and how much drift takes place, it may be necessary over time to change the runway designation. As runways are designated with headings rounded to the nearest 10 degrees, this will affect some runways more than others. For example, if the magnetic heading of a runway is 233 degrees, it would be designated Runway 23. If the magnetic heading changed downwards by 5 degrees to 228, the Runway would still be Runway 23. If on the other hand the original magnetic heading was 226 (Runway 23), and the heading decreased by only 2 degrees to 224, the runway should become Runway 22. Because the drift itself is quite slow, runway designation changes are uncommon, and not welcomed, as they require an accompanying change in aeronautical charts and descriptive documents. When runway designations do change, especially at major airports, it is often changed at night as taxiway signs need to be changed and the huge numbers at each end of the runway need to be repainted to the new runway designators. In July 2009 for example, London Stansted Airport in the United Kingdom changed its runway designations from 05/23 to 04/22 during the night.
For fixed-wing aircraft it is advantageous to perform takeoffs and landings into the wind to reduce takeoff or landing roll and reduce the ground speed needed to attain flying speed. Larger airports usually have several runways in different directions, so that one can be selected that is most nearly aligned with the wind. Airports with one runway are often constructed to be aligned with the prevailing wind. Compiling a wind rose is in fact one of the preliminary steps taken in constructing airport runways.〔() Retrieved on 2012-02-24.〕 Note that wind direction is given as the direction the wind is coming ''from'': a plane taking off from runway 09 would be facing east, directly into an "east wind" blowing from 090 degrees.
== Declared distances ==
Runway dimensions vary from as small as long and wide in smaller general aviation airports, to long and wide at large international airports built to accommodate the largest jets, to the huge lake bed runway 17/35 at Edwards Air Force Base in California – a landing site for the retired Space Shuttle.〔. Federal Aviation Administration.〕
Takeoff and landing distances available are given using one of the following terms:
;TORA
:Takeoff Run Available – The length of runway declared available and suitable for the ground run of an airplane taking off.
;TODA〔
:Takeoff Distance Available – The length of the takeoff run available plus the length of the clearway, if clearway is provided.〔
:(The clearway length allowed must lie within the aerodrome or airport boundary. According to the Federal Aviation Regulations and Joint Aviation Requirements (JAR) TODA is the lesser of TORA plus clearway or 1.5 times TORA).
;ASDA〔
: Accelerate-Stop Distance Available – The length of the takeoff run available plus the length of the stopway, if stopway is provided.〔
;LDA〔
: Landing Distance Available – The length of runway that is declared available and suitable for the ground run of an airplane landing.
;EMDA
: Emergency Distance Available – LDA (or TORA) plus a stopway.

抄文引用元・出典: フリー百科事典『 Takeoff Run Available – The length of runway declared available and suitable for the ground run of an airplane taking off.;TODA:Takeoff Distance Available – The length of the takeoff run available plus the length of the clearway, if clearway is provided.:(The clearway length allowed must lie within the aerodrome or airport boundary. According to the Federal Aviation Regulations and Joint Aviation Requirements (JAR) TODA is the lesser of TORA plus clearway or 1.5 times TORA).;ASDA: Accelerate-Stop Distance Available – The length of the takeoff run available plus the length of the stopway, if stopway is provided.;LDA: Landing Distance Available – The length of runway that is declared available and suitable for the ground run of an airplane landing.;EMDA : Emergency Distance Available – LDA (or TORA) plus a stopway.">ウィキペディア(Wikipedia)
Takeoff Run Available – The length of runway declared available and suitable for the ground run of an airplane taking off.;TODA:Takeoff Distance Available – The length of the takeoff run available plus the length of the clearway, if clearway is provided.:(The clearway length allowed must lie within the aerodrome or airport boundary. According to the Federal Aviation Regulations and Joint Aviation Requirements (JAR) TODA is the lesser of TORA plus clearway or 1.5 times TORA).;ASDA: Accelerate-Stop Distance Available – The length of the takeoff run available plus the length of the stopway, if stopway is provided.;LDA: Landing Distance Available – The length of runway that is declared available and suitable for the ground run of an airplane landing.;EMDA : Emergency Distance Available – LDA (or TORA) plus a stopway.">ウィキペディアで「According to the International Civil Aviation Organization (ICAO), a runway is a "defined rectangular area on a land aerodrome prepared for the landing and takeoff of aircraft". Runways may be a man-made surface (often asphalt, concrete, or a mixture of both) or a natural surface (grass, dirt, gravel, ice, or salt).== Naming ==Runways are named by a number between 01 and 36, which is generally the magnetic azimuth of the runway's heading in decadegrees: a runway numbered 09 points east (90°), runway 18 is south (180°), runway 27 points west (270°) and runway 36 points to the north (360° rather than 0°).(Federal Aviation Administration Aeronautical Information Manual, Chapter 2, Section 3 Airport Marking Aids and Signs part 3b ) When taking off from or landing on runway 09, a plane would be heading 90° (east). However, runways in North America that lie within the Northern Domestic Airspace of Canada are numbered relative to true north because proximity to the magnetic North Pole makes the magnetic declination large.(RAC – 2.0 AIRSPACE – REQUIREMENTS AND PROCEDURES – 2.2.1 Northern Domestic Airspace ) from Transport CanadaA runway can normally be used in both directions, and is named for each direction separately: e.g., "runway 33" in one direction is "runway 15" when used in the other. The two numbers usually differ by 18 (= 180°).If there is more than one runway pointing in the same direction (parallel runways), each runway is identified by appending Left (L), Center (C) and Right (R) to the number to identify its position (when facing its direction) — for example, Runways One Five Left (15L), One Five Center (15C), and One Five Right (15R). Runway Zero Three Left (03L) becomes Runway Two One Right (21R) when used in the opposite direction (derived from adding 18 to the original number for the 180 degrees when approaching from the opposite direction). In some countries, if parallel runways are too close to each other, regulations mandate that only one runway may be used at a time under certain conditions (usually adverse weather).At large airports with four or more parallel runways (for example, at Los Angeles, Detroit Metropolitan Wayne County, Hartsfield-Jackson Atlanta, Denver, Dallas-Fort Worth and Orlando) some runway identifiers are shifted by 10 degrees to avoid the ambiguity that would result with more than three parallel runways. For example, in Los Angeles, this system results in runways 6L, 6R, 7L, and 7R, even though all four runways are actually parallel (approximately 69 degrees). At Dallas/Fort Worth International Airport, there are five parallel runways, named 17L, 17C, 17R, 18L, and 18R, all oriented at a heading of 175.4 degrees. Occasionally, an airport with only 3 parallel runways may use different runway identifiers, for example when a third parallel runway was opened at Phoenix Sky Harbor International Airport in 2000 to the south of existing 8R/26L, rather than confusingly becoming the "new" 8R/26L it was instead designated 7R/25L, with the former 8R/26L becoming 7L/25R and 8L/26R becoming 8/26.For clarity in radio communications, each digit in the runway name is pronounced individually: runway three six, runway one four, etc. A leading zero, for example in "runway zero six" or "runway zero one left", is included for all ICAO and some U.S. military airports (such as Edwards Air Force Base). However, most U.S. civil aviation airports drop the leading zero as required by FAA regulation. This also includes some military airfields such as Cairns Army Airfield. This American anomaly may lead to inconsistencies in conversations between American pilots and controllers in other countries. It is very common in a country such as Canada for a controller to clear an incoming American aircraft to, for example, runway 04, and the pilot read back the clearance as runway 4. In flight simulation programs those of American origin might apply U.S. usage to airports around the world. For example, runway 05 at Halifax will appear on the program as the single digit 5 rather than 05.Runway designations change over time because the magnetic poles slowly drift on the Earth's surface and the magnetic bearing will change. Depending on the airport location and how much drift takes place, it may be necessary over time to change the runway designation. As runways are designated with headings rounded to the nearest 10 degrees, this will affect some runways more than others. For example, if the magnetic heading of a runway is 233 degrees, it would be designated Runway 23. If the magnetic heading changed downwards by 5 degrees to 228, the Runway would still be Runway 23. If on the other hand the original magnetic heading was 226 (Runway 23), and the heading decreased by only 2 degrees to 224, the runway should become Runway 22. Because the drift itself is quite slow, runway designation changes are uncommon, and not welcomed, as they require an accompanying change in aeronautical charts and descriptive documents. When runway designations do change, especially at major airports, it is often changed at night as taxiway signs need to be changed and the huge numbers at each end of the runway need to be repainted to the new runway designators. In July 2009 for example, London Stansted Airport in the United Kingdom changed its runway designations from 05/23 to 04/22 during the night.For fixed-wing aircraft it is advantageous to perform takeoffs and landings into the wind to reduce takeoff or landing roll and reduce the ground speed needed to attain flying speed. Larger airports usually have several runways in different directions, so that one can be selected that is most nearly aligned with the wind. Airports with one runway are often constructed to be aligned with the prevailing wind. Compiling a wind rose is in fact one of the preliminary steps taken in constructing airport runways.() Retrieved on 2012-02-24. Note that wind direction is given as the direction the wind is coming ''from'': a plane taking off from runway 09 would be facing east, directly into an "east wind" blowing from 090 degrees.== Declared distances == Runway dimensions vary from as small as long and wide in smaller general aviation airports, to long and wide at large international airports built to accommodate the largest jets, to the huge lake bed runway 17/35 at Edwards Air Force Base in California – a landing site for the retired Space Shuttle.. Federal Aviation Administration.Takeoff and landing distances available are given using one of the following terms:;TORA:Takeoff Run Available – The length of runway declared available and suitable for the ground run of an airplane taking off.;TODA:Takeoff Distance Available – The length of the takeoff run available plus the length of the clearway, if clearway is provided.:(The clearway length allowed must lie within the aerodrome or airport boundary. According to the Federal Aviation Regulations and Joint Aviation Requirements (JAR) TODA is the lesser of TORA plus clearway or 1.5 times TORA).;ASDA: Accelerate-Stop Distance Available – The length of the takeoff run available plus the length of the stopway, if stopway is provided.;LDA: Landing Distance Available – The length of runway that is declared available and suitable for the ground run of an airplane landing.;EMDA : Emergency Distance Available – LDA (or TORA) plus a stopway.」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.