翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

pleochroism : ウィキペディア英語版
pleochroism


Pleochroism is an optical phenomenon in which a substance appears to be different colors when observed at different angles, especially with polarized light.
== Background ==
Anisotropic crystals will have optical properties that vary with the direction of light. The polarization of light determines the direction of the electric field, and crystals will respond in different ways if this angle is changed. These kinds of crystals have one or two optical axes. If absorption of light varies with the angle relative to the optical axis in a crystal then pleochroism results.
Anisotropic crystals have double refraction of light where light of different polarizations is bent different amounts by the crystal, and therefore follows different paths through the crystal. The components of a divided light beam follow different paths within the mineral and travel at different speeds. When the mineral is observed at some angle, light following some combination of paths and polarizations will be present, each of which will have had light of different colors absorbed. At another angle, the light passing through the crystal will be composed of another combination of light paths and polarizations, each with their own color. The light passing through the mineral will therefore have different colors when it is viewed from different angles, making the stone seem to be of different colors.
Tetragonal, trigonal and hexagonal minerals can only show two colors and are called dichroic. Orthorhombic, monoclinic and triclinic crystals can show three and are trichroic. For example, hypersthene, with two optical axes, can have red, yellow or blue appearance when oriented in three different ways in three-dimensional space. Isometric minerals cannot exhibit pleochroism.〔 Tourmaline is notable for exhibiting strong pleochroism. Gems are sometimes cut and set either to display pleochroism or to hide it, depending on the colors and their attractiveness.
The pleochroic colours are at their maximum when light is polarized parallel with a crystallographic axis. The axes are designated X, Y and Z. These axes can be determined from the appearance of a crystal in a conoscopic interference pattern. Where there are two optical axes, the acute bisection of the axes gives Z for positive minerals and X for negative minerals and the obtuse bisection give the alternative axis (X or Z). Perpendicular to these is the Y axis. The colour is measured with the polarization parallel to each direction. An absorption formula records the amount of absorption parallel to each axis in the form of X < Y < Z with the left most having the least absorption and the rightmost the most.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「pleochroism」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.