翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

pion : ウィキペディア英語版
pion

In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons (and, more generally, the lightest hadrons), because they are composed of the lightest quarks (the u and d quarks). They are unstable, with the charged pions and decaying with a mean lifetime of 26 nanoseconds ( seconds), and the neutral pion decaying with a much shorter lifetime of seconds. Charged pions most often decay into muons and muon neutrinos, and neutral pions into gamma rays.
The exchange of virtual pions, along with the vector, rho and omega mesons, provides an explanation for the residual strong force between nucleons. Pions are not produced in radioactive decay, but are produced commonly in high energy accelerators in collisions between hadrons. All types of pions are also produced in natural processes when high energy cosmic ray protons and other hadronic cosmic ray components interact with matter in the Earth's atmosphere. Recently, detection of characteristic gamma rays originating from decay of neutral pions in two supernova remnant stars has shown that pions are produced copiously in supernovas, most probably in conjunction with production of high energy protons that are detected on Earth as cosmic rays.〔

The concept of mesons as the carrier particles of the nuclear force was first proposed in 1935 by Hideki Yukawa. While the muon was first proposed to be this particle after its discovery in 1936, later work found that it did not participate in the strong nuclear interaction. The pions, which turned out to be examples of Yukawa's proposed mesons, were discovered later: the charged pions in 1947, and the neutral pion in 1950.
==History==

Theoretical work by Hideki Yukawa in 1935 had predicted the existence of mesons as the carrier particles of the strong nuclear force. From the range of the strong nuclear force (inferred from the radius of the atomic nucleus), Yukawa predicted the existence of a particle having a mass of about 100 MeV. Initially after its discovery in 1936, the muon (initially called the "mu meson") was thought to be this particle, since it has a mass of 106 MeV. However, later particle physics experiments showed that the muon did not participate in the strong nuclear interaction. In modern terminology, this makes the muon a lepton, and not a true meson. However, some communities of nuclear physicists, continue to call the muon a "mu-meson."
In 1947, the first true mesons, the charged pions, were found by the collaboration of Cecil Powell, César Lattes, Giuseppe Occhialini, ''et al.'', at the University of Bristol, in England. Since the advent of particle accelerators had not yet come, high-energy subatomic particles were only obtainable from atmospheric cosmic rays. Photographic emulsions, which used the gelatin-silver process, were placed for long periods of time in sites located at high altitude mountains, first at Pic du Midi de Bigorre in the Pyrenees, and later at Chacaltaya in the Andes Mountains, where they were impacted by cosmic rays.
After the development of the photographic plates, microscopic inspection of the emulsions revealed the tracks of charged subatomic particles. Pions were first identified by their unusual "double meson" tracks, which were left by their decay into another "meson". (It was actually the muon, which is not classified as a meson in modern particle physics.) In 1948, Lattes, Eugene Gardner, and their team first artificially produced pions at the University of California's cyclotron in Berkeley, California, by bombarding carbon atoms with high-speed alpha particles. Further advanced theoretical work was carried out by Riazuddin, who in 1959, used the dispersion relation for Compton scattering of virtual photons on pions to analyze their charge radius.〔

Nobel Prizes in Physics were awarded to Yukawa in 1949 for his theoretical prediction of the existence of mesons, and to Cecil Powell in 1950 for developing and applying the technique of particle detection using photographic emulsions.
Since the neutral pion is not electrically charged, it is more difficult to detect and observe than the charged pions are. Neutral pions do not leave tracks in photographic emulsions, and neither do they in Wilson cloud chambers. The existence of the neutral pion was inferred from observing its decay products from cosmic rays, a so-called "soft component" of slow electrons with photons. The was identified definitively at the University of California's cyclotron in 1950 by observing its decay into two photons.〔
〕 Later in the same year, they were also observed in cosmic-ray balloon experiments at Bristol University.
The pion also plays a crucial role in cosmology, by imposing an upper limit on the energies of cosmic rays surviving collisions with the cosmic microwave background, through the Greisen–Zatsepin–Kuzmin limit.
In the standard understanding of the strong force interaction (called QCD, "quantum chromodynamics"), pions are understood to be the pseudo-Nambu-Goldstone bosons of spontaneously broken chiral symmetry. This explains why the three kinds of pions' masses are considerably less than the masses of the other mesons, such as the scalar or vector mesons. If their current quarks were massless particles, hypothetically, making the chiral symmetry exact, then the Goldstone theorem would dictate that all pions have zero masses. In reality, since the light quarks actually have minuscule nonzero masses, the pions also have nonzero rest masses, albeit ''almost an order of magnitude smaller'' than that of the nucleons, roughly ''m''π ≈ √q / ''f''π ≈ √q 45 MeV, where ''m'' are the relevant current quark masses in MeV, 5−10 MeVs.
The use of pions in medical radiation therapy, such as for cancer, was explored at a number of research institutions, including the Los Alamos National Laboratory's Meson Physics Facility, which treated 228 patients between 1974 and 1981 in New Mexico,〔
〕 and the TRIUMF laboratory in Vancouver, British Columbia.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「pion」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.