翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

hydroelectricity : ウィキペディア英語版
hydroelectricity

Hydroelectricity is the term referring to electricity generated by hydropower; the production of electrical power through the use of the gravitational force of falling or flowing water. It is the most widely used form of renewable energy, accounting for 16 percent of global electricity generation – 3,427 terawatt-hours of electricity production in 2010,〔 and is expected to increase about 3.1% each year for the next 25 years.
Hydropower is produced in 150 countries, with the Asia-Pacific region generating 32 percent of global hydropower in 2010. China is the largest hydroelectricity producer, with 721 terawatt-hours of production in 2010, representing around 17 percent of domestic electricity use.
The cost of hydroelectricity is relatively low, making it a competitive source of renewable electricity. The average cost of electricity from a hydro station larger than 10 megawatts is 3 to 5 U.S. cents per kilowatt-hour.〔 It is also a flexible source of electricity since the amount produced by the station can be changed up or down very quickly to adapt to changing energy demands. However, damming interrupts the flow of rivers and can harm local ecosystems, and building large dams and reservoirs often involves displacing people and wildlife.〔 Once a hydroelectric complex is constructed, the project produces no direct waste, and has a considerably lower output level of the greenhouse gas carbon dioxide () than fossil fuel powered energy plants.〔(Renewables 2011 Global Status Report, page 25, Hydropower ), ''REN21'', published 2011, accessed 2011-11-7.〕
==History==

Hydropower has been used since ancient times to grind flour and perform other tasks. In the mid-1770s, French engineer Bernard Forest de Bélidor published ''Architecture Hydraulique'' which described vertical- and horizontal-axis hydraulic machines. By the late 19th century, the electrical generator was developed and could now be coupled with hydraulics.〔(【引用サイトリンク】title=History of Hydropower )〕 The growing demand for the Industrial Revolution would drive development as well.〔(【引用サイトリンク】url=http://www.waterencyclopedia.com/Ge-Hy/Hydroelectric-Power.html )〕 In 1878 the world's first hydroelectric power scheme was developed at Cragside in Northumberland, England by William George Armstrong. It was used to power a single arc lamp in his art gallery. The old Schoelkopf Power Station No. 1 near Niagara Falls in the U.S. side began to produce electricity in 1881. The first Edison hydroelectric power station, the Vulcan Street Plant, began operating September 30, 1882, in Appleton, Wisconsin, with an output of about 12.5 kilowatts.〔(【引用サイトリンク】title= Hydroelectric power - energy from falling water )〕 By 1886 there were 45 hydroelectric power stations in the U.S. and Canada. By 1889 there were 200 in the U.S. alone.〔
At the beginning of the 20th century, many small hydroelectric power stations were being constructed by commercial companies in mountains near metropolitan areas. Grenoble, France held the International Exhibition of Hydropower and Tourism with over one million visitors. By 1920 as 40% of the power produced in the United States was hydroelectric, the Federal Power Act was enacted into law. The Act created the Federal Power Commission to regulate hydroelectric power stations on federal land and water. As the power stations became larger, their associated dams developed additional purposes to include flood control, irrigation and navigation. Federal funding became necessary for large-scale development and federally owned corporations, such as the Tennessee Valley Authority (1933) and the Bonneville Power Administration (1937) were created.〔 Additionally, the Bureau of Reclamation which had begun a series of western U.S. irrigation projects in the early 20th century was now constructing large hydroelectric projects such as the 1928 Hoover Dam.〔(【引用サイトリンク】url=http://www.usbr.gov/lc/region/g1000/pdfiles/bcpact.pdf )〕 The U.S. Army Corps of Engineers was also involved in hydroelectric development, completing the Bonneville Dam in 1937 and being recognized by the Flood Control Act of 1936 as the premier federal flood control agency.〔(The Evolution of the Flood Control Act of 1936, Joseph L. Arnold, United States Army Corps of Engineers, 1988 )〕
Hydroelectric power stations continued to become larger throughout the 20th century. Hydropower was referred to as ''white coal'' for its power and plenty. Hoover Dam's initial 1,345 MW power station was the world's largest hydroelectric power station in 1936; it was eclipsed by the 6809 MW Grand Coulee Dam in 1942.〔(【引用サイトリンク】title=Hoover Dam and Lake Mead )〕 The Itaipu Dam opened in 1984 in South America as the largest, producing 14,000 MW but was surpassed in 2008 by the Three Gorges Dam in China at 22,500 MW. Hydroelectricity would eventually supply some countries, including Norway, Democratic Republic of the Congo, Paraguay and Brazil, with over 85% of their electricity. The United States currently has over 2,000 hydroelectric power stations that supply 6.4% of its total electrical production output, which is 49% of its renewable electricity.〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「hydroelectricity」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.