翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

dipole : ウィキペディア英語版
In physics, there are several kinds of dipole:*An electric dipole is a separation of positive and negative charges. The simplest example of this is a pair of electric charges of equal magnitude but opposite sign, separated by some (usually small) distance. A permanent electric dipole is called an electret.*A magnetic dipole is a closed circulation of electric current. A simple example of this is a single loop of wire with some constant current through it.*A current dipole is a current from a sink of current to a source of current within a (usually conducting) medium. Current dipoles are often used to model neuronal sources of electromagnetic fields that can be measured using Magnetoencephalography or Electroencephalography.Dipoles can be characterized by their dipole moment, a vector quantity. For the simple electric dipole given above, the electric dipole moment points from the negative charge towards the positive charge, and has a magnitude equal to the strength of each charge times the separation between the charges. (To be precise: for the definition of the dipole moment, one should always consider the "dipole limit", where e.g. the distance of the generating charges should ''converge'' to 0, while simultaneously the charge strength should ''diverge'' to infinity in such a way that the product remains a positive constant.)For the current loop, the magnetic dipole moment points through the loop (according to the right hand grip rule), with a magnitude equal to the current in the loop times the area of the loop.In addition to current loops, the electron, among other fundamental particles, has a magnetic dipole moment. This is because it generates a magnetic field that is identical to that generated by a very small current loop. However, the electron's magnetic moment is not due to a current loop, but is instead an intrinsic property of the electron. It is also possible that the electron has an ''electric'' dipole moment, although this has not yet been observed (see electron electric dipole moment for more information).A permanent magnet, such as a bar magnet, owes its magnetism to the intrinsic magnetic dipole moment of the electron. The two ends of a bar magnet are referred to as poles (not to be confused with monopoles), and may be labeled "north" and "south". In terms of the Earth's magnetic field, these are respectively "north-seeking" and "south-seeking" poles, that is if the magnet were freely suspended in the Earth's magnetic field, the north-seeking pole would point towards the north and the south-seeking pole would point twards the south. The dipole moment of the bar magnet points from its magnetic south to its magnetic north pole. The north pole of a bar magnet in a compass points north. However, this means that Earth's geomagnetic north pole is the ''south'' pole (south-seeking pole) of its dipole moment, and vice versa.The only known mechanisms for the creation of magnetic dipoles are by current loops or quantum-mechanical spin since the existence of magnetic monopoles has never been experimentally demonstrated.The term comes from the Greek δίς (''dis''), "twice"(δίς ), Henry George Liddell, Robert Scott, ''A Greek-English Lexicon'', on Perseus and πόλος (''pòlos''), "axis".(πόλος ), Henry George Liddell, Robert Scott, ''A Greek-English Lexicon'', on Perseus== Classification ==A ''physical dipole'' consists of two equal and opposite point charges: in the literal sense, two poles. Its field at large distances (i.e., distances large in comparison to the separation of the poles) depends almost entirely on the dipole moment as defined above. A ''point (electric) dipole'' is the limit obtained by letting the separation tend to 0 while keeping the dipole moment fixed. The field of a point dipole has a particularly simple form, and the order-1 term in the multipole expansion is precisely the point dipole field.Although there are no known magnetic monopoles in nature, there are magnetic dipoles in the form of the quantum-mechanical spin associated with particles such as electrons (although the accurate description of such effects falls outside of classical electromagnetism). A theoretical magnetic ''point dipole'' has a magnetic field of exactly the same form as the electric field of an electric point dipole. A very small current-carrying loop is approximately a magnetic point dipole; the magnetic dipole moment of such a loop is the product of the current flowing in the loop and the (vector) area of the loop.Any configuration of charges or currents has a 'dipole moment', which describes the dipole whose field is the best approximation, at large distances, to that of the given configuration. This is simply one term in the multipole expansion when the total charge ("monopole moment") is 0 — as it ''always'' is for the magnetic case, since there are no magnetic monopoles. The dipole term is the dominant one at large distances: Its field falls off in proportion to 1/''r''3, as compared to 1/''r''4 for the next (quadrupole) term and higher powers of 1/''r'' for higher terms, or 1/''r''2 for the monopole term.==Molecular dipoles==Ammonia and redirects from Molecular dipole -->Many molecules have such dipole moments due to non-uniform distributions of positive and negative charges on the various atoms. Such is the case with polar compounds like hydrogen fluoride (HF), where electron density is shared unequally between atoms. Therefore, a molecule's dipole is an electric dipole with an inherent electric field which should not be confused with a magnetic dipole which generates a magnetic field.The physical chemist Peter J. W. Debye was the first scientist to study molecular dipoles extensively, and, as a consequence, dipole moments are measured in units named ''debye'' in his honor.For molecules there are three types of dipoles:* Permanent dipoles: These occur when two atoms in a molecule have substantially different electronegativity: One atom attracts electrons more than another, becoming more negative, while the other atom becomes more positive. A molecule with a permanent dipole moment is called a ''polar'' molecule. See dipole-dipole attractions.* Instantaneous dipoles: These occur due to chance when electrons happen to be more concentrated in one place than another in a molecule, creating a temporary dipole. See instantaneous dipole.* Induced dipoles: These can occur when one molecule with a permanent dipole repels another molecule's electrons, ''inducing'' a dipole moment in that molecule. A molecule is ''polarized'' when it carries an induced dipole. See induced-dipole attraction.More generally, an induced dipole of ''any'' polarizable charge distribution ''ρ'' (remember that a molecule has a charge distribution) is caused by an electric field external to ''ρ''. This field may, for instance, originate from an ion or polar molecule in the vicinity of ''ρ'' or may be macroscopic (e.g., a molecule between the plates of a charged capacitor). The size of the induced dipole is equal to the product of the strength of theexternal field and the dipole polarizability of ''ρ''.Dipole moment values can be obtained from measurement of the dielectric constant. Some typical gas phase values in debye units are:* carbon dioxide: 0* carbon monoxide: 0.112 D* ozone: 0.53 D* phosgene: 1.17 D* water vapor: 1.85 D* hydrogen cyanide: 2.98 D* cyanamide: 4.27 D* potassium bromide: 10.41 DKBr has one of the highest dipole moments because it is a very ionic molecule (which only exists as a molecule in the gas phase). The overall dipole moment of a molecule may be approximated as a vector sum of bond dipole moments. As a vector sum it depends on the relative orientation of the bonds, so that from the dipole moment information can be deduced about the molecular geometry.For example the zero dipole of CO2 implies that the two C=O bond dipole moments cancel so that the molecule must be linear. For H2O the O-H bond moments do not cancel because the molecule is bent. For ozone (O3) which is also a bent molecule, the bond dipole moments are not zero even though the O-O bonds are between similar atoms. This agrees with the Lewis structures for the resonance forms of ozone which show a positive charge on the central oxygen atom. An example in organic chemistry of the role of geometry in determining dipole moment is the ''cis'' and ''trans'' isomers of 1,2-dichloroethene. In the cis isomer the two polar C-Cl bonds are on the same side of the C=C double bond and the molecular dipole moment is 1.90 D. In the trans isomer, the dipole moment is zero because the two C-Cl bond are on opposite sides of the C=C and cancel (and the two bond moments for the much less polar C-H bonds also cancel).Another example of the role of molecular geometry is boron trifluoride, which has three polar bonds with a difference in electronegativity greater than the traditionally cited threshold of 1.7 for ionic bonding. However, due to the equilateral triangular distribution of the fluoride ions about the boron cation center, the molecule as a whole does not exhibit any identifiable pole: one cannot construct a plane that divides the molecule into a net negative part and a net positive part.

In physics, there are several kinds of dipole:
*An electric dipole is a separation of positive and negative charges. The simplest example of this is a pair of electric charges of equal magnitude but opposite sign, separated by some (usually small) distance. A permanent electric dipole is called an electret.
*A magnetic dipole is a closed circulation of electric current. A simple example of this is a single loop of wire with some constant current through it.
*A current dipole is a current from a sink of current to a source of current within a (usually conducting) medium. Current dipoles are often used to model neuronal sources of electromagnetic fields that can be measured using Magnetoencephalography or Electroencephalography.
Dipoles can be characterized by their dipole moment, a vector quantity. For the simple electric dipole given above, the electric dipole moment points from the negative charge towards the positive charge, and has a magnitude equal to the strength of each charge times the separation between the charges. (To be precise: for the definition of the dipole moment, one should always consider the "dipole limit", where e.g. the distance of the generating charges should ''converge'' to 0, while simultaneously the charge strength should ''diverge'' to infinity in such a way that the product remains a positive constant.)
For the current loop, the magnetic dipole moment points through the loop (according to the right hand grip rule), with a magnitude equal to the current in the loop times the area of the loop.
In addition to current loops, the electron, among other fundamental particles, has a magnetic dipole moment. This is because it generates a magnetic field that is identical to that generated by a very small current loop. However, the electron's magnetic moment is not due to a current loop, but is instead an intrinsic property of the electron. It is also possible that the electron has an ''electric'' dipole moment, although this has not yet been observed (see electron electric dipole moment for more information).
A permanent magnet, such as a bar magnet, owes its magnetism to the intrinsic magnetic dipole moment of the electron. The two ends of a bar magnet are referred to as poles (not to be confused with monopoles), and may be labeled "north" and "south". In terms of the Earth's magnetic field, these are respectively "north-seeking" and "south-seeking" poles, that is if the magnet were freely suspended in the Earth's magnetic field, the north-seeking pole would point towards the north and the south-seeking pole would point twards the south. The dipole moment of the bar magnet points from its magnetic south to its magnetic north pole. The north pole of a bar magnet in a compass points north. However, this means that Earth's geomagnetic north pole is the ''south'' pole (south-seeking pole) of its dipole moment, and vice versa.
The only known mechanisms for the creation of magnetic dipoles are by current loops or quantum-mechanical spin since the existence of magnetic monopoles has never been experimentally demonstrated.
The term comes from the Greek δίς (''dis''), "twice"〔(δίς ), Henry George Liddell, Robert Scott, ''A Greek-English Lexicon'', on Perseus〕 and πόλος (''pòlos''), "axis".〔(πόλος ), Henry George Liddell, Robert Scott, ''A Greek-English Lexicon'', on Perseus〕
== Classification ==

A ''physical dipole'' consists of two equal and opposite point charges: in the literal sense, two poles. Its field at large distances (i.e., distances large in comparison to the separation of the poles) depends almost entirely on the dipole moment as defined above. A ''point (electric) dipole'' is the limit obtained by letting the separation tend to 0 while keeping the dipole moment fixed. The field of a point dipole has a particularly simple form, and the order-1 term in the multipole expansion is precisely the point dipole field.
Although there are no known magnetic monopoles in nature, there are magnetic dipoles in the form of the quantum-mechanical spin associated with particles such as electrons (although the accurate description of such effects falls outside of classical electromagnetism). A theoretical magnetic ''point dipole'' has a magnetic field of exactly the same form as the electric field of an electric point dipole. A very small current-carrying loop is approximately a magnetic point dipole; the magnetic dipole moment of such a loop is the product of the current flowing in the loop and the (vector) area of the loop.
Any configuration of charges or currents has a 'dipole moment', which describes the dipole whose field is the best approximation, at large distances, to that of the given configuration. This is simply one term in the multipole expansion when the total charge ("monopole moment") is 0 — as it ''always'' is for the magnetic case, since there are no magnetic monopoles. The dipole term is the dominant one at large distances: Its field falls off in proportion to 1/''r''3, as compared to 1/''r''4 for the next (quadrupole) term and higher powers of 1/''r'' for higher terms, or 1/''r''2 for the monopole term.
==Molecular dipoles==
Many molecules have such dipole moments due to non-uniform distributions of positive and negative charges on the various atoms. Such is the case with polar compounds like hydrogen fluoride (HF), where electron density is shared unequally between atoms. Therefore, a molecule's dipole is an electric dipole with an inherent electric field which should not be confused with a magnetic dipole which generates a magnetic field.
The physical chemist Peter J. W. Debye was the first scientist to study molecular dipoles extensively, and, as a consequence, dipole moments are measured in units named ''debye'' in his honor.
For molecules there are three types of dipoles:
* Permanent dipoles: These occur when two atoms in a molecule have substantially different electronegativity: One atom attracts electrons more than another, becoming more negative, while the other atom becomes more positive. A molecule with a permanent dipole moment is called a ''polar'' molecule. See dipole-dipole attractions.
* Instantaneous dipoles: These occur due to chance when electrons happen to be more concentrated in one place than another in a molecule, creating a temporary dipole. See instantaneous dipole.
* Induced dipoles: These can occur when one molecule with a permanent dipole repels another molecule's electrons, ''inducing'' a dipole moment in that molecule. A molecule is ''polarized'' when it carries an induced dipole. See induced-dipole attraction.
More generally, an induced dipole of ''any'' polarizable charge distribution ''ρ'' (remember that a molecule has a charge distribution) is caused by an electric field external to ''ρ''. This field may, for instance, originate from an ion or polar molecule in the vicinity of ''ρ'' or may be macroscopic (e.g., a molecule between the plates of a charged capacitor). The size of the induced dipole is equal to the product of the strength of the
external field and the dipole polarizability of ''ρ''.
Dipole moment values can be obtained from measurement of the dielectric constant. Some typical gas phase values in debye units are:
* carbon dioxide: 0
* carbon monoxide: 0.112 D
* ozone: 0.53 D
* phosgene: 1.17 D
* water vapor: 1.85 D
* hydrogen cyanide: 2.98 D
* cyanamide: 4.27 D
* potassium bromide: 10.41 D
KBr has one of the highest dipole moments because it is a very ionic molecule (which only exists as a molecule in the gas phase).
The overall dipole moment of a molecule may be approximated as a vector sum of bond dipole moments. As a vector sum it depends on the relative orientation of the bonds, so that from the dipole moment information can be deduced about the molecular geometry.
For example the zero dipole of CO2 implies that the two C=O bond dipole moments cancel so that the molecule must be linear. For H2O the O-H bond moments do not cancel because the molecule is bent. For ozone (O3) which is also a bent molecule, the bond dipole moments are not zero even though the O-O bonds are between similar atoms. This agrees with the Lewis structures for the resonance forms of ozone which show a positive charge on the central oxygen atom.

An example in organic chemistry of the role of geometry in determining dipole moment is the ''cis'' and ''trans'' isomers of 1,2-dichloroethene. In the cis isomer the two polar C-Cl bonds are on the same side of the C=C double bond and the molecular dipole moment is 1.90 D. In the trans isomer, the dipole moment is zero because the two C-Cl bond are on opposite sides of the C=C and cancel (and the two bond moments for the much less polar C-H bonds also cancel).
Another example of the role of molecular geometry is boron trifluoride, which has three polar bonds with a difference in electronegativity greater than the traditionally cited threshold of 1.7 for ionic bonding. However, due to the equilateral triangular distribution of the fluoride ions about the boron cation center, the molecule as a whole does not exhibit any identifiable pole: one cannot construct a plane that divides the molecule into a net negative part and a net positive part.

抄文引用元・出典: フリー百科事典『 Many molecules have such dipole moments due to non-uniform distributions of positive and negative charges on the various atoms. Such is the case with polar compounds like hydrogen fluoride (HF), where electron density is shared unequally between atoms. Therefore, a molecule's dipole is an electric dipole with an inherent electric field which should not be confused with a magnetic dipole which generates a magnetic field.The physical chemist Peter J. W. Debye was the first scientist to study molecular dipoles extensively, and, as a consequence, dipole moments are measured in units named ''debye'' in his honor.For molecules there are three types of dipoles:* Permanent dipoles: These occur when two atoms in a molecule have substantially different electronegativity: One atom attracts electrons more than another, becoming more negative, while the other atom becomes more positive. A molecule with a permanent dipole moment is called a ''polar'' molecule. See dipole-dipole attractions.* Instantaneous dipoles: These occur due to chance when electrons happen to be more concentrated in one place than another in a molecule, creating a temporary dipole. See instantaneous dipole.* Induced dipoles: These can occur when one molecule with a permanent dipole repels another molecule's electrons, ''inducing'' a dipole moment in that molecule. A molecule is ''polarized'' when it carries an induced dipole. See induced-dipole attraction.More generally, an induced dipole of ''any'' polarizable charge distribution ''ρ'' (remember that a molecule has a charge distribution) is caused by an electric field external to ''ρ''. This field may, for instance, originate from an ion or polar molecule in the vicinity of ''ρ'' or may be macroscopic (e.g., a molecule between the plates of a charged capacitor). The size of the induced dipole is equal to the product of the strength of theexternal field and the dipole polarizability of ''ρ''.Dipole moment values can be obtained from measurement of the dielectric constant. Some typical gas phase values in debye units are:* carbon dioxide: 0* carbon monoxide: 0.112 D* ozone: 0.53 D* phosgene: 1.17 D* water vapor: 1.85 D* hydrogen cyanide: 2.98 D* cyanamide: 4.27 D* potassium bromide: 10.41 DKBr has one of the highest dipole moments because it is a very ionic molecule (which only exists as a molecule in the gas phase). The overall dipole moment of a molecule may be approximated as a vector sum of bond dipole moments. As a vector sum it depends on the relative orientation of the bonds, so that from the dipole moment information can be deduced about the molecular geometry.For example the zero dipole of CO2 implies that the two C=O bond dipole moments cancel so that the molecule must be linear. For H2O the O-H bond moments do not cancel because the molecule is bent. For ozone (O3) which is also a bent molecule, the bond dipole moments are not zero even though the O-O bonds are between similar atoms. This agrees with the Lewis structures for the resonance forms of ozone which show a positive charge on the central oxygen atom. An example in organic chemistry of the role of geometry in determining dipole moment is the ''cis'' and ''trans'' isomers of 1,2-dichloroethene. In the cis isomer the two polar C-Cl bonds are on the same side of the C=C double bond and the molecular dipole moment is 1.90 D. In the trans isomer, the dipole moment is zero because the two C-Cl bond are on opposite sides of the C=C and cancel (and the two bond moments for the much less polar C-H bonds also cancel).Another example of the role of molecular geometry is boron trifluoride, which has three polar bonds with a difference in electronegativity greater than the traditionally cited threshold of 1.7 for ionic bonding. However, due to the equilateral triangular distribution of the fluoride ions about the boron cation center, the molecule as a whole does not exhibit any identifiable pole: one cannot construct a plane that divides the molecule into a net negative part and a net positive part.">ウィキペディア(Wikipedia)
Many molecules have such dipole moments due to non-uniform distributions of positive and negative charges on the various atoms. Such is the case with polar compounds like hydrogen fluoride (HF), where electron density is shared unequally between atoms. Therefore, a molecule's dipole is an electric dipole with an inherent electric field which should not be confused with a magnetic dipole which generates a magnetic field.The physical chemist Peter J. W. Debye was the first scientist to study molecular dipoles extensively, and, as a consequence, dipole moments are measured in units named ''debye'' in his honor.For molecules there are three types of dipoles:* Permanent dipoles: These occur when two atoms in a molecule have substantially different electronegativity: One atom attracts electrons more than another, becoming more negative, while the other atom becomes more positive. A molecule with a permanent dipole moment is called a ''polar'' molecule. See dipole-dipole attractions.* Instantaneous dipoles: These occur due to chance when electrons happen to be more concentrated in one place than another in a molecule, creating a temporary dipole. See instantaneous dipole.* Induced dipoles: These can occur when one molecule with a permanent dipole repels another molecule's electrons, ''inducing'' a dipole moment in that molecule. A molecule is ''polarized'' when it carries an induced dipole. See induced-dipole attraction.More generally, an induced dipole of ''any'' polarizable charge distribution ''ρ'' (remember that a molecule has a charge distribution) is caused by an electric field external to ''ρ''. This field may, for instance, originate from an ion or polar molecule in the vicinity of ''ρ'' or may be macroscopic (e.g., a molecule between the plates of a charged capacitor). The size of the induced dipole is equal to the product of the strength of theexternal field and the dipole polarizability of ''ρ''.Dipole moment values can be obtained from measurement of the dielectric constant. Some typical gas phase values in debye units are:* carbon dioxide: 0* carbon monoxide: 0.112 D* ozone: 0.53 D* phosgene: 1.17 D* water vapor: 1.85 D* hydrogen cyanide: 2.98 D* cyanamide: 4.27 D* potassium bromide: 10.41 DKBr has one of the highest dipole moments because it is a very ionic molecule (which only exists as a molecule in the gas phase). The overall dipole moment of a molecule may be approximated as a vector sum of bond dipole moments. As a vector sum it depends on the relative orientation of the bonds, so that from the dipole moment information can be deduced about the molecular geometry.For example the zero dipole of CO2 implies that the two C=O bond dipole moments cancel so that the molecule must be linear. For H2O the O-H bond moments do not cancel because the molecule is bent. For ozone (O3) which is also a bent molecule, the bond dipole moments are not zero even though the O-O bonds are between similar atoms. This agrees with the Lewis structures for the resonance forms of ozone which show a positive charge on the central oxygen atom. An example in organic chemistry of the role of geometry in determining dipole moment is the ''cis'' and ''trans'' isomers of 1,2-dichloroethene. In the cis isomer the two polar C-Cl bonds are on the same side of the C=C double bond and the molecular dipole moment is 1.90 D. In the trans isomer, the dipole moment is zero because the two C-Cl bond are on opposite sides of the C=C and cancel (and the two bond moments for the much less polar C-H bonds also cancel).Another example of the role of molecular geometry is boron trifluoride, which has three polar bonds with a difference in electronegativity greater than the traditionally cited threshold of 1.7 for ionic bonding. However, due to the equilateral triangular distribution of the fluoride ions about the boron cation center, the molecule as a whole does not exhibit any identifiable pole: one cannot construct a plane that divides the molecule into a net negative part and a net positive part.">ウィキペディアで「In physics, there are several kinds of dipole:*An electric dipole is a separation of positive and negative charges. The simplest example of this is a pair of electric charges of equal magnitude but opposite sign, separated by some (usually small) distance. A permanent electric dipole is called an electret.*A magnetic dipole is a closed circulation of electric current. A simple example of this is a single loop of wire with some constant current through it.*A current dipole is a current from a sink of current to a source of current within a (usually conducting) medium. Current dipoles are often used to model neuronal sources of electromagnetic fields that can be measured using Magnetoencephalography or Electroencephalography.Dipoles can be characterized by their dipole moment, a vector quantity. For the simple electric dipole given above, the electric dipole moment points from the negative charge towards the positive charge, and has a magnitude equal to the strength of each charge times the separation between the charges. (To be precise: for the definition of the dipole moment, one should always consider the "dipole limit", where e.g. the distance of the generating charges should ''converge'' to 0, while simultaneously the charge strength should ''diverge'' to infinity in such a way that the product remains a positive constant.)For the current loop, the magnetic dipole moment points through the loop (according to the right hand grip rule), with a magnitude equal to the current in the loop times the area of the loop.In addition to current loops, the electron, among other fundamental particles, has a magnetic dipole moment. This is because it generates a magnetic field that is identical to that generated by a very small current loop. However, the electron's magnetic moment is not due to a current loop, but is instead an intrinsic property of the electron. It is also possible that the electron has an ''electric'' dipole moment, although this has not yet been observed (see electron electric dipole moment for more information).A permanent magnet, such as a bar magnet, owes its magnetism to the intrinsic magnetic dipole moment of the electron. The two ends of a bar magnet are referred to as poles (not to be confused with monopoles), and may be labeled "north" and "south". In terms of the Earth's magnetic field, these are respectively "north-seeking" and "south-seeking" poles, that is if the magnet were freely suspended in the Earth's magnetic field, the north-seeking pole would point towards the north and the south-seeking pole would point twards the south. The dipole moment of the bar magnet points from its magnetic south to its magnetic north pole. The north pole of a bar magnet in a compass points north. However, this means that Earth's geomagnetic north pole is the ''south'' pole (south-seeking pole) of its dipole moment, and vice versa.The only known mechanisms for the creation of magnetic dipoles are by current loops or quantum-mechanical spin since the existence of magnetic monopoles has never been experimentally demonstrated.The term comes from the Greek δίς (''dis''), "twice"(δίς ), Henry George Liddell, Robert Scott, ''A Greek-English Lexicon'', on Perseus and πόλος (''pòlos''), "axis".(πόλος ), Henry George Liddell, Robert Scott, ''A Greek-English Lexicon'', on Perseus== Classification ==A ''physical dipole'' consists of two equal and opposite point charges: in the literal sense, two poles. Its field at large distances (i.e., distances large in comparison to the separation of the poles) depends almost entirely on the dipole moment as defined above. A ''point (electric) dipole'' is the limit obtained by letting the separation tend to 0 while keeping the dipole moment fixed. The field of a point dipole has a particularly simple form, and the order-1 term in the multipole expansion is precisely the point dipole field.Although there are no known magnetic monopoles in nature, there are magnetic dipoles in the form of the quantum-mechanical spin associated with particles such as electrons (although the accurate description of such effects falls outside of classical electromagnetism). A theoretical magnetic ''point dipole'' has a magnetic field of exactly the same form as the electric field of an electric point dipole. A very small current-carrying loop is approximately a magnetic point dipole; the magnetic dipole moment of such a loop is the product of the current flowing in the loop and the (vector) area of the loop.Any configuration of charges or currents has a 'dipole moment', which describes the dipole whose field is the best approximation, at large distances, to that of the given configuration. This is simply one term in the multipole expansion when the total charge ("monopole moment") is 0 — as it ''always'' is for the magnetic case, since there are no magnetic monopoles. The dipole term is the dominant one at large distances: Its field falls off in proportion to 1/''r''3, as compared to 1/''r''4 for the next (quadrupole) term and higher powers of 1/''r'' for higher terms, or 1/''r''2 for the monopole term.==Molecular dipoles==Ammonia and redirects from Molecular dipole -->Many molecules have such dipole moments due to non-uniform distributions of positive and negative charges on the various atoms. Such is the case with polar compounds like hydrogen fluoride (HF), where electron density is shared unequally between atoms. Therefore, a molecule's dipole is an electric dipole with an inherent electric field which should not be confused with a magnetic dipole which generates a magnetic field.The physical chemist Peter J. W. Debye was the first scientist to study molecular dipoles extensively, and, as a consequence, dipole moments are measured in units named ''debye'' in his honor.For molecules there are three types of dipoles:* Permanent dipoles: These occur when two atoms in a molecule have substantially different electronegativity: One atom attracts electrons more than another, becoming more negative, while the other atom becomes more positive. A molecule with a permanent dipole moment is called a ''polar'' molecule. See dipole-dipole attractions.* Instantaneous dipoles: These occur due to chance when electrons happen to be more concentrated in one place than another in a molecule, creating a temporary dipole. See instantaneous dipole.* Induced dipoles: These can occur when one molecule with a permanent dipole repels another molecule's electrons, ''inducing'' a dipole moment in that molecule. A molecule is ''polarized'' when it carries an induced dipole. See induced-dipole attraction.More generally, an induced dipole of ''any'' polarizable charge distribution ''ρ'' (remember that a molecule has a charge distribution) is caused by an electric field external to ''ρ''. This field may, for instance, originate from an ion or polar molecule in the vicinity of ''ρ'' or may be macroscopic (e.g., a molecule between the plates of a charged capacitor). The size of the induced dipole is equal to the product of the strength of theexternal field and the dipole polarizability of ''ρ''.Dipole moment values can be obtained from measurement of the dielectric constant. Some typical gas phase values in debye units are:* carbon dioxide: 0* carbon monoxide: 0.112 D* ozone: 0.53 D* phosgene: 1.17 D* water vapor: 1.85 D* hydrogen cyanide: 2.98 D* cyanamide: 4.27 D* potassium bromide: 10.41 DKBr has one of the highest dipole moments because it is a very ionic molecule (which only exists as a molecule in the gas phase). The overall dipole moment of a molecule may be approximated as a vector sum of bond dipole moments. As a vector sum it depends on the relative orientation of the bonds, so that from the dipole moment information can be deduced about the molecular geometry.For example the zero dipole of CO2 implies that the two C=O bond dipole moments cancel so that the molecule must be linear. For H2O the O-H bond moments do not cancel because the molecule is bent. For ozone (O3) which is also a bent molecule, the bond dipole moments are not zero even though the O-O bonds are between similar atoms. This agrees with the Lewis structures for the resonance forms of ozone which show a positive charge on the central oxygen atom. An example in organic chemistry of the role of geometry in determining dipole moment is the ''cis'' and ''trans'' isomers of 1,2-dichloroethene. In the cis isomer the two polar C-Cl bonds are on the same side of the C=C double bond and the molecular dipole moment is 1.90 D. In the trans isomer, the dipole moment is zero because the two C-Cl bond are on opposite sides of the C=C and cancel (and the two bond moments for the much less polar C-H bonds also cancel).Another example of the role of molecular geometry is boron trifluoride, which has three polar bonds with a difference in electronegativity greater than the traditionally cited threshold of 1.7 for ionic bonding. However, due to the equilateral triangular distribution of the fluoride ions about the boron cation center, the molecule as a whole does not exhibit any identifiable pole: one cannot construct a plane that divides the molecule into a net negative part and a net positive part.」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.