翻訳と辞書
Words near each other
・ Soichiro Fukutake
・ Soichiro Honda
・ Soichiro Ito
・ Soichiro Shimizu
・ Soichiro Tahara
・ Soichiro Tateoka
・ Soichiro Watase
・ Soiernspitze
・ Soignies
・ Soignolles
・ Soignolles-en-Brie
・ Soigné
・ Soignébougou
・ SoIK Hellas
・ Soikinsky Peninsula
Soil
・ Soil & "Pimp" Sessions
・ Soil & Health Association of New Zealand
・ Soil (band)
・ Soil (disambiguation)
・ Soil (EP)
・ Soil (manga)
・ Soil (musical group)
・ Soil acidification
・ Soil and grain
・ Soil and Water Assessment Tool
・ Soil and Water Conservation Act
・ Soil and Water Conservation Bureau
・ Soil and Water Conservation Society
・ Soil Art Gallery


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Soil : ウィキペディア英語版
Soil

Soil is the mixture of minerals, organic matter, gases, liquids, and the countless organisms that together support life on Earth. Soil is a natural body known as the pedosphere and which performs four important functions: it is a medium for plant growth; it is a means of water storage, supply and purification; it is a modifier of Earth's atmosphere; it is a habitat for organisms; all of which, in turn, modify the soil.
Soil is considered to be the "skin of the Earth" and interfaces with its lithosphere, hydrosphere, atmosphere, and biosphere. Soil consists of a solid phase (minerals and organic matter) as well as a porous phase that holds gases and water. Accordingly, soils are often treated as a three-state system.
Soil is the end product of the influence of the climate, relief (elevation, orientation, and slope of terrain), organisms, and parent materials (original minerals) interacting over time. Soil continually undergoes development by way of numerous physical, chemical and biological processes, which include weathering with associated erosion.
Most soils have a density between 1 and 2 g/cm3.〔(【引用サイトリンク】title=Soil Bulk Density Calculator (U.S. Texture Triangle) )〕 Little of the soil of planet Earth is older than the Pleistocene and none is older than the Cenozoic, although fossilized soils are preserved from as far back as the Archean.
Soil science has two basic branches of study: edaphology and pedology. Pedology is focused on the formation, description (morphology), and classification of soils in their natural environment, whereas edaphology is concerned with the influence of soils on organisms. In engineering terms, soil is referred to as regolith, or loose rock material that lies above the 'solid geology'. Soil is commonly referred to as "earth" or "dirt"; technically, the term "dirt" should be restricted to displaced soil.
As soil resources serve as a basis for food security, the international community advocates for its sustainable and responsible use through different types of Soil Governance.
==Overview==

Soil is a major component of the Earth's ecosystem. The world's ecosystems are impacted in far-reaching ways by the processes carried out in the soil, from ozone depletion and global warming, to rain forest destruction and water pollution. Soil is the largest surficial global carbon reservoir on Earth, and it is potentially one of the most reactive to human disturbance and climate change. As the planet warms, soils will add carbon dioxide to the atmosphere due to its increased biological activity at higher temperatures. Thus, soil carbon losses likely have a large positive feedback response to global warming.
Soil acts as an engineering medium, a habitat for soil organisms, a recycling system for nutrients and organic wastes, a regulator of water quality, a modifier of atmospheric composition, and a medium for plant growth. Since soil has a tremendous range of available niches and habitats, it contains most of the Earth's genetic diversity. A gram of soil can contain billions of organisms, belonging to thousands of species. Soil has a mean prokaryotic density of roughly 1013 organisms per cubic meter, whereas the ocean has a mean prokaryotic density of roughly 108 organisms per cubic meter. The carbon content stored in soil is eventually returned to the atmosphere through the process of respiration, which is carried out by heterotrophic organisms that feed upon the carbonaceous material in the soil. Since plant roots need oxygen, ventilation is an important characteristic of soil. This ventilation can be accomplished via networks of soil pores, which also absorb and hold rainwater making it readily available for plant uptake. Since plants require a nearly continuous supply of water, but most regions receive sporadic rainfall, the water-holding capacity of soils is vital for plant survival.
Soils can effectively remove impurities, kill disease agents, and degrade contaminants. Typically, soils maintain a net absorption of oxygen and methane, and undergo a net release of carbon dioxide and nitrous oxide. Soils offer plants physical support, air, water, temperature moderation, nutrients, and protection from toxins. Soils provide readily available nutrients to plants and animals by converting dead organic matter into various nutrient forms.
Soils supply plants with nutrients that are held in place by the clay and humus content of that soil. For optimum plant growth, the soil components by volume should be roughly 50% solids (45% mineral and 5% organic matter), and 50% voids of which half is occupied by water and half by gas. The percent soil mineral and organic content is typically treated as a constant, while the percent soil water and gas content is considered highly variable whereby a rise in one is simultaneously balanced by a reduction in the other. The pore space allows for the infiltration and movement of air and water, both of which are critical for life in soil. Compaction, a common problem with soils, reduces this space, preventing air and water from reaching the plant roots and soil organisms.
Given sufficient time, an undifferientated soil will evolve a soil profile which consists of two or more layers, referred to as soil horizons, that differ in one or more properties such as in their texture, structure, density, porosity, consistency, temperature, color, and reactivity. The horizons differ greatly in thickness and generally lack sharp boundaries. Soil profile development is dependent on the processes that form soils from their parent materials, the type of parent material, and the factors that control soil formation. The biological influences on soil properties are strongest near the surface, while the geochemical influences on soil properties increase with depth. Mature soil profiles in temperate climate regions typically include three basic master horizons: A, B and C. The solum normally includes the A and B horizons. The living component of the soil is largely confined to the solum. In the more hot, humid, climate of the tropics, a soil may have only a single horizon.
The soil texture is determined by the relative proportions of sand, silt, and clay in the soil. The addition of organic matter, water, gases and time causes the soil of a certain texture to develop into a larger soil structure called an aggregate. At that point a soil can be said to be developed, and can be described further in terms of color, porosity, consistency, reaction etc.
Of all the factors influencing the evolution of soil, water is the most powerful due to its involvement in the solution, erosion, transportation, and deposition of the materials of which a soil is composed. The mixture of water and dissolved and materials suspended that occupy the soil pore space is called the soil solution. Since soil water is never pure water, but contains hundreds of dissolved organic and mineral substances, it may be more accurately called the soil solution. Water is central to the solution, precipitation and leaching of minerals from the soil profile. Finally, water affects the type of vegetation that grows in a soil, which in turn affects the development of the soil profile.
The most influential factor in stabilizing soil fertility are the soil colloidal particles, clay and humus, which behave as repositories of nutrients and moisture and so act to buffer the variations of soil solution ions and moisture. The contribution of soil colloids to soil nutrition are out of proportion to their part of the soil. Colloids act to store nutrients that might otherwise be leached from the soil or to release those ions in response to changes of soil pH, and so, make them available to plants.〔(【引用サイトリンク】title=Sources. Negative Charge: )
The greatest influence on plant nutrient availability is soil pH, which is a measure of the hydrogen ion (acid-forming) soil reactivity, and is in turn a function of the soil materials, precipitation level, and plant root behavior. Soil pH strongly affects the availability of nutrients.
Most nutrients, with the exception of nitrogen, originate from minerals. Some nitrogen originates from rain (as dilute nitric acid), but most of the nitrogen is available in soils as a result of nitrogen fixation by bacteria. The action of microbes on organic matter and minerals may be to free nutrients for use, sequester them, or cause their loss from the soil by their volatilisation to gases or their leaching from the soil. The nutrients may be stored on soil colloids, or live or dead organic matter, but they may not be accessible to plants due to extremes of pH.
The organic material of the soil has a powerful effect on its development, fertility, and available moisture. Following water and soil colloids, organic material is next in importance to soil's formation and fertility.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Soil」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.