翻訳と辞書
Words near each other
・ Quashquame
・ Quasi
・ Quasi alliance
・ Quasi at the Quackadero
・ Quasi corporation
・ Quasi Delay Insensitive
・ Quasi Fermi level
・ Quasi in rem jurisdiction
・ Quasi Object
・ Quasi Self Boot 93–96
・ Quasi Universal Intergalactic Denomination
・ Quasi-algebraically closed field
・ Quasi-analog signal
・ Quasi-analytic function
・ Quasi-arithmetic mean
Quasi-bialgebra
・ Quasi-biennial oscillation
・ Quasi-bipartite graph
・ Quasi-birth–death process
・ Quasi-category
・ Quasi-commutative property
・ Quasi-compact morphism
・ Quasi-constitutionality
・ Quasi-continuous function
・ Quasi-contract
・ Quasi-criminal
・ Quasi-crystals (supramolecular)
・ Quasi-delict
・ Quasi-derivative
・ Quasi-elemental


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Quasi-bialgebra : ウィキペディア英語版
Quasi-bialgebra
In mathematics, quasi-bialgebras are a generalization of bialgebras: they were first defined by the Ukrainian mathematician Vladimir Drinfeld in 1990. A quasi-bialgebra differs from a bialgebra by having coassociativity replaced by an invertible element \Phi which controls the non-coassociativity. One of their key properties is that the corresponding category of modules forms a tensor category.
== Definition ==
A quasi-bialgebra \mathcal = (\mathcal, \Delta, \varepsilon, \Phi,l,r) is an algebra \mathcal over a field \mathbb equipped with morphisms of algebras
:\Delta : \mathcal \rightarrow \mathcal
:\varepsilon : \mathcal \rightarrow \mathbb
along with invertible elements \Phi \in \mathcal, and r,l \in A such that the following identities hold:
:(id \otimes \Delta) \circ \Delta(a) = \Phi \lbrack (\Delta \otimes id) \circ \Delta (a) \rbrack \Phi^, \quad \forall a \in \mathcal
:\lbrack (id \otimes id \otimes \Delta)(\Phi) \rbrack \ \lbrack (\Delta \otimes id \otimes id)(\Phi) \rbrack = (1 \otimes \Phi) \ \lbrack (id \otimes \Delta \otimes id)(\Phi) \rbrack \ (\Phi \otimes 1)
:(\varepsilon \otimes id)(\Delta a) = l^ a l, \qquad (id \otimes \varepsilon) \circ \Delta = r^ a r, \quad \forall a \in \mathcal
:(id \otimes \varepsilon \otimes id)(\Phi) = 1 \otimes 1.
Where \Delta and \epsilon are called the comultiplication and counit, r and l are called the right and left unit constraints (resp.), and \Phi is sometimes called the ''Drinfeld associator''.〔C. Kassel. "Quantum Groups". Graduate Texts in Mathematics Springer-Verlag. ISBN 0387943706〕 This definition is constructed so that the category \mathcal-Mod is a tensor category under the usual vector space tensor product, and in fact this can be taken as the definition instead of the list of above identities.〔 Since many of the quasi-bialgebras that appear "in nature" have trivial unit constraints, ie. l=r=1 the definition may sometimes be given with this assumed.〔 Note that a bialgebra is just a quasi-bialgebra with trivial unit and associativity constraints: l=r=1 and \Phi=1 \otimes 1 \otimes 1.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Quasi-bialgebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.