翻訳と辞書
Words near each other
・ K-water
・ K-Way Merge Algorithms
・ K-X-P
・ K-Y Jelly
・ K-Z
・ K. (novel)
・ K-frame
・ K-function
・ K-Gee
・ K-graph C*-algebra
・ K-group
・ K-Hill (artist)
・ K-Hito
・ K-Hits
・ K-hole
K-homology
・ K-ID
・ K-independent hashing
・ K-index
・ K-index (meteorology)
・ K-Jee
・ K-K-K-Katy
・ K-Klass
・ K-LEE Radio
・ K-Liber
・ K-Line
・ K-line
・ K-line (artificial intelligence)
・ K-line (spectrometry)
・ K-Lite Codec Pack


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

K-homology : ウィキペディア英語版
K-homology
In mathematics, K-homology is a homology theory on the category of locally compact Hausdorff spaces. It classifies the elliptic pseudo-differential operators acting on the vector bundles over a space. In terms of C^
*-algebras
, it classifies the Fredholm modules over an algebra.
An operator homotopy between two Fredholm modules (\mathcal,F_0,\Gamma) and (\mathcal,F_1,\Gamma) is a norm continuous path of Fredholm modules, t \mapsto (\mathcal,F_t,\Gamma), t \in (). Two Fredholm modules are then equivalent if they are related by unitary transformations or operator homotopies. The K^0(A) group is the abelian group of equivalence classes of even Fredholm modules over A. The K^1(A) group is the abelian group of equivalence classes of odd Fredholm modules over A. Addition is given by direct summation of Fredholm modules, and the inverse of (\mathcal, F, \Gamma) is (\mathcal, -F, -\Gamma).
== References ==

* N. Higson and J. Roe, ''Analytic K-homology''. Oxford University Press, 2000.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「K-homology」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.