翻訳と辞書
Words near each other
・ Ethics of technology
・ Ethics of terraforming
・ Ethics Resource Center
・ Ethics, Institutions, and the Right to Philosophy
・ Ethicspoint
・ Ethicurean
・ Ethidium bromide
・ Ethidium homodimer assay
・ Ethie Castle
・ Ethienne Reynecke
・ Ethik in der Schauweise der Wissenschaften vom Menschen und von der Gesellschaft
・ Ethilla
・ Ethilon
・ Ethinamate
・ Ethinyl estradiol
Ethernet
・ Ethernet Active Line Access
・ Ethernet Alliance
・ Ethernet Automatic Protection Switching
・ Ethernet Configuration Testing Protocol
・ Ethernet crossover cable
・ Ethernet Exchange
・ Ethernet extender
・ Ethernet flow control
・ Ethernet frame
・ Ethernet Global Data Protocol
・ Ethernet hub
・ Ethernet in the first mile
・ Ethernet over coax
・ Ethernet over copper


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Ethernet : ウィキペディア英語版
Ethernet

Ethernet is a family of computer networking technologies for local area networks (LANs) and metropolitan area networks (MANs). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3, and has since been refined to support higher bit rates and longer link distances. Over time, Ethernet has largely replaced competing wired LAN technologies such as token ring, FDDI, and ARCNET. The primary alternative for contemporary LANs is not a wired standard, but instead a wireless LAN standardized as IEEE 802.11 and also known as Wi-Fi.
The comprise several wiring and signaling variants of the OSI physical layer in use with Ethernet. The original 10BASE5 Ethernet uses coaxial cable as a shared medium, while the newer Ethernet variants use twisted pair and fiber optic links in conjunction with hubs or switches. Over the course of its history, Ethernet data transfer rates have been increased from the original 2.94 megabits per second (Mbit/s) to the latest 100 gigabits per second (Gbit/s), with 400 Gbit/s expected by late 2017.
Systems communicating over Ethernet divide a stream of data into shorter pieces called frames. Each frame contains source and destination addresses, and error-checking data so that damaged frames can be detected and discarded; most often, higher-layer protocols trigger retransmission of lost frames. As per the OSI model, Ethernet provides services up to and including the data link layer.
Since its commercial release, Ethernet has retained a good degree of backward compatibility. Features such as the 48-bit MAC address and Ethernet frame format have influenced other networking protocols.
==History==

Ethernet was developed at Xerox PARC between 1973 and 1974. It was inspired by ALOHAnet, which Robert Metcalfe had studied as part of his PhD dissertation. The idea was first documented in a memo that Metcalfe wrote on May 22, 1973, where he named it after the disproven luminiferous ether as an "omnipresent, completely-passive medium for the propagation of electromagnetic waves".〔 In 1975, Xerox filed a patent application listing Metcalfe, David Boggs, Chuck Thacker, and Butler Lampson as inventors.〔 "Multipoint data communication system (with collision detection)"〕 In 1976, after the system was deployed at PARC, Metcalfe and Boggs published a seminal paper.
Metcalfe left Xerox in June 1979 to form 3Com.〔〔 He convinced Digital Equipment Corporation (DEC), Intel, and Xerox to work together to promote Ethernet as a standard. The so-called "DIX" standard, for "Digital/Intel/Xerox", specified 10 Mbit/s Ethernet, with 48-bit destination and source addresses and a global 16-bit Ethertype-type field. It was published on September 30, 1980 as "The Ethernet, A Local Area Network. Data Link Layer and Physical Layer Specifications". Version 2 was published in November, 1982 and defines what has become known as Ethernet II. Formal standardization efforts proceeded at the same time and resulted in the publication of IEEE 802.3 on June 23, 1983.〔
Ethernet initially competed with two largely proprietary systems, Token Ring and Token Bus. Because Ethernet was able to adapt to market realities and shift to inexpensive and ubiquitous twisted pair wiring, these proprietary protocols soon found themselves competing in a market inundated by Ethernet products, and, by the end of the 1980s, Ethernet was clearly the dominant network technology.〔 In the process, 3Com became a major company. 3Com shipped its first 10 Mbit/s Ethernet 3C100 NIC in March 1981, and that year started selling adapters for PDP-11s and VAXes, as well as Multibus-based Intel and Sun Microsystems computers. This was followed quickly by DEC's Unibus to Ethernet adapter, which DEC sold and used internally to build its own corporate network, which reached over 10,000 nodes by 1986, making it one of the largest computer networks in the world at that time. An Ethernet adapter card for the IBM PC was released in 1982, and, by 1985, 3Com had sold 100,000.〔 By the early 1990s, Ethernet became so prevalent that it was a must-have feature for modern computers, and Ethernet ports began to appear on some PCs and most workstations. This process was greatly sped up with the introduction of 10BASE-T and its relatively small modular connector, at which point Ethernet ports appeared even on low-end motherboards.
Since then, Ethernet technology has evolved to meet new bandwidth and market requirements. In addition to computers, Ethernet is now used to interconnect appliances and other personal devices.〔 It is used in industrial applications and is quickly replacing legacy data transmission systems in the world's telecommunications networks. By 2010, the market for Ethernet equipment amounted to over $16 billion per year.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Ethernet」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.