翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

DSL : ウィキペディア英語版
Digital subscriber line

Digital subscriber line (DSL; originally digital subscriber loop) is a family of technologies that are used to transmit digital data over telephone lines. In telecommunications marketing, the term DSL is widely understood to mean asymmetric digital subscriber line (ADSL), the most commonly installed DSL technology, for Internet access. DSL service can be delivered simultaneously with wired telephone service on the same telephone line. This is possible because DSL uses higher frequency bands for data. On the customer premises, a DSL filter on each non-DSL outlet blocks any high-frequency interference to enable simultaneous use of the voice and DSL services.
The bit rate of consumer DSL services typically ranges from 256 kbit/s to over 100 Mbit/s in the direction to the customer (downstream), depending on DSL technology, line conditions, and service-level implementation. Bit rates of 1 Gbit/s have been reached in trials,〔(The Next Generation of DSL Can Pump 1Gbps Through Copper Phone Lines ), Gizmodo, 18 December 2013, Andrew Tarantola〕 but most homes are likely to be limited to 500-800 Mbit/s. In ADSL, the data throughput in the upstream direction (the direction to the service provider) is lower, hence the designation of ''asymmetric'' service. In symmetric digital subscriber line (SDSL) services, the downstream and upstream data rates are equal. Researchers at Bell Labs have reached speeds of 10 Gbit/s, while delivering 1 Gbit/s symmetrical broadband access services using traditional copper telephone lines. These higher speeds are lab results, however.〔(Alcatel-Lucent sets broadband speed record using copper ), Phys.org, 10 July 2014, Nancy Owano〕〔(Researchers get record broadband speeds out of old-school copper wire ), Engadget, 10 July 2014, Matt Brian〕 A 2012 survey found that "DSL continues to be the dominant technology for broadband access" with 364.1 million subscribers worldwide.〔http://point-topic.com/wp-content/uploads/2013/02/Sample-Report-Global-Broadband-Statistics-Q2-2012.pdf〕
==History==
For a long time it was thought that it was not possible to operate a conventional phone-line beyond low-speed limits (typically under 9600 bit/s). In the 1950s, ordinary twisted-pair telephone-cable often carried four megahertz (MHz) television signals between studios, suggesting that such lines would allow transmitting many megabits per second. One such circuit in the UK ran some ten miles (16 km) between the BBC studios in Newcastle-upon-Tyne and the Pontop Pike transmitting station. It was able to give the studios a low quality cue feed but not one suitable for transmission. However, these cables had other impairments besides Gaussian noise, preventing such rates from becoming practical in the field.
The 1980s saw the development of techniques for broadband communications that allowed the limit to be greatly extended. A patent was filed in 1979 for the use of existing telephone wires for both telephones and data terminals that were connected to a remote computer via a digital data carrier system. The motivation for digital subscriber line technology was the Integrated Services Digital Network (ISDN) specification proposed in 1984 by the CCITT (now ITU-T) as part of Recommendation I.120, later reused as ISDN Digital Subscriber Line (IDSL). Employees at Bellcore (now Telcordia Technologies) developed Asymmetric Digital Subscriber Line (ADSL) by placing wide-band digital signals above the existing baseband analog voice signal carried between telephone company telephone exchanges and customers on conventional twisted pair cabling facilities, and filed a patent in 1988.
Joseph W. Lechleider's contribution to DSL was his insight that an asymmetric arrangement offered more than double the bandwidth capacity of symmetric DSL. This allowed Internet service providers to offer efficient service to consumers, who benefited greatly from the ability to download large amounts of data but rarely needed to upload comparable amounts. ADSL supports two modes of transport—fast channel and interleaved channel. Fast channel is preferred for streaming multimedia, where an occasional ''dropped bit'' is acceptable, but lags are less so. Interleaved channel works better for file transfers, where the delivered data must be error-free but latency (time delay) incurred by the retransmission of error-containing packets is acceptable.
Consumer-oriented ADSL was designed to operate on existing lines already conditioned for Basic Rate Interface ISDN services, which itself is a digital circuit switching service (non-IP), though most incumbent local exchange carriers (ILECs) provision Rate-Adaptive Digital Subscriber Line (RADSL) to work on virtually any available copper pair facility, whether conditioned for BRI or not.
Engineers developed high speed DSL facilities such as High bit rate Digital Subscriber Line (HDSL) and Symmetric Digital Subscriber Line (SDSL) to provision traditional Digital Signal 1 (DS1) services over standard copper pair facilities.
Older ADSL standards delivered 8 Mbit/s to the customer over about of unshielded twisted-pair copper wire. Newer variants improved these rates. Distances greater than significantly reduce the bandwidth usable on the wires, thus reducing the data rate. But ADSL loop extenders increase these distances by repeating the signal, allowing the LEC to deliver DSL speeds to any distance.〔(Infinite Reach ADSL )〕
Until the late 1990s, the cost of digital signal processors for DSL was prohibitive. All types of DSL employ highly complex digital signal processing algorithms to overcome the inherent limitations of the existing twisted pair wires. Due to the advancements of very-large-scale integration (VLSI) technology, the cost of the equipment associated with a DSL deployment lowered significantly. The two main pieces of equipment are a digital subscriber line access multiplexer (DSLAM) at one end and a DSL modem at the other end.
A DSL connection can be deployed over existing cable. Such deployment, even including equipment, is much cheaper than installing a new, high-bandwidth fiber-optic cable over the same route and distance. This is true both for ADSL and SDSL variations. The commercial success of DSL and similar technologies largely reflects the advances made in electronics over the decades that have increased performance and reduced costs even while digging trenches in the ground for new cables (copper or fiber optic) remains expensive.
In the case of ADSL, competition in Internet access caused subscription fees to drop significantly over the years, thus making ADSL more economical than dial up access. Telephone companies were pressured into moving to ADSL largely due to competition from cable companies, which use DOCSIS cable modem technology to achieve similar speeds. Demand for high bandwidth applications, such as video and file sharing, also contributed to popularize ADSL technology.
Early DSL service required a dedicated dry loop, but when the U.S. Federal Communications Commission (FCC) required ILECs to lease their lines to competing DSL service providers, shared-line DSL became available. Also known as DSL over Unbundled Network Element, this unbundling of services allows a single subscriber to receive two separate services from two separate providers on one cable pair. The DSL service provider's equipment is co-located in the same central office (telephone exchange) as that of the ILEC supplying the customer's pre-existing voice service. The subscriber's circuit is rewired to interface with hardware supplied by the ILEC which combines a DSL frequency and POTS signals on a single copper pair facility.
By 2012 some carriers in the United States reported that DSL remote terminals with fiber backhaul are replacing older ADSL systems.〔(DSL Death March Continues ) by Om Malik, Apr 24, 2012, Gigaom.com〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Digital subscriber line」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.