Words near each other
 ・ Rifa'a al-Tahtawi ・ Rifa'i ・ Rifaat al-Assad ・ Rifaat Eid ・ Rifaat El-Fanagily ・ Rifaat el-Mahgoub ・ Rifaat Garrana ・ Rifaat Hussain ・ Rifaat Turk ・ Rifabutin ・ Rifaina ・ Rifalazil ・ Rifampicin ・ Riesz mean ・ Riesz potential ・ Riesz rearrangement inequality ・ Riesz representation theorem ・ Riesz sequence ・ Riesz space ・ Riesz theorem ・ Riesz transform ・ Riesz's lemma ・ Riesz–Fischer theorem ・ Riesz–Markov–Kakutani representation theorem ・ Riesz–Thorin theorem ・ Riet ・ Riet River ・ Riet River (Doring) ・ Riet, Germany ・ Rietavas
 Dictionary Lists
 mini英和辞書
 mini和英辞書
 Webster 1913
 Latin-English
 FOLDOC
 Wikipedia English
 ウィキペディア
 翻訳と辞書　辞書検索 [ 開発暫定版 ]
 スポンサード リンク
 Riesz rearrangement inequality ： ウィキペディア英語版
Riesz rearrangement inequality
In mathematics, the Riesz rearrangement inequality (sometimes called Riesz-Sobolev inequality)states that for any three non-negative functions ''f,g,h'', the integral
:$I\left(f,g,h\right) = \iint_^n\right\} f\left(x\right) g\left(x-y\right) h\left(y\right) \, dxdy$
satisfies the inequality
:$I\left(f,g,h\right) \leq I\left(f^$
*,g^
*,h^
*)
where $f^$
*,g^
*,h^
* are the symmetric decreasing rearrangements of the functions ''f,g,'' and ''h,'' respectively.
The inequality was first proved by Frigyes Riesz in 1930, and independently reproved by S.L.Sobolev in 1938. It can be generalized to arbitrarily (but finitely) many functions acting on arbitrarily many variables. In the case where any one of the three functions is a strictly symmetric-decreasing function, equality holds only when the other two functions are equal, up to translation, to their symmetric-decreasing rearrangements.
==Sources==

*

ウィキペディアで「Riesz rearrangement inequality」の詳細全文を読む

スポンサード リンク
 翻訳と辞書 : 翻訳のためのインターネットリソース