| 翻訳と辞書 | Rademacher's theorem| Rademacher's theorem  : ウィキペディア英語版 | 
 In mathematical analysis, Rademacher's theorem, named after Hans Rademacher, states the following: If  is an open subset of  and    is Lipschitz continuous, then   is differentiable almost everywhere in ; that is, the points in  at which   is ''not'' differentiable form a set of Lebesgue measure zero.
 ==Generalizations==
 
 There is a version of Rademacher's theorem that holds for Lipschitz functions from a Euclidean space into an arbitrary metric space in terms of metric differentials instead of the usual derivative.
 
 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』
 ■ウィキペディアで「Rademacher's theorem」の詳細全文を読む
 
 
 
 スポンサード リンク
 
 | 翻訳と辞書 : 翻訳のためのインターネットリソース | 
 | Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
 
 | 
 |