翻訳と辞書
Words near each other
・ Longitarsus luridus
・ Longitarsus obliteratus
・ Longitarsus ochroleucus
・ Longitarsus petitpierrei
・ Longitarsus quadriguttatus
・ Longitarsus suturellus
・ Longitarsus velai
・ Longitarsus ventricosus
・ Longitarsus vilis
・ Longitarsus violentoides
・ Longitarsus violentus
・ Longitarsus weisei
・ Longitarsus zangherii
・ Longitergite
・ Longitrichanenteria
Longitude
・ Longitude (book)
・ Longitude (TV series)
・ Longitude 131°
・ Longitude Act
・ Longitude by chronometer
・ Longitude LLC
・ Longitude of the ascending node
・ Longitude of the periapsis
・ Longitude of vernal equinox
・ Longitude Prize 2014
・ Longitude Research
・ Longitude Rewards
・ Longitude rewards
・ Longitudes and Attitudes


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Longitude : ウィキペディア英語版
Longitude

Longitude ( or , British also ),〔http://www.merriam-webster.com/dictionary/longitude

Oxford English Dictionary〕 is a geographic coordinate that specifies the east-west position of a point on the Earth's surface. It is an angular measurement, usually expressed in degrees and denoted by the Greek letter lambda (λ). Points with the same longitude lie in lines running from the North Pole to the South Pole. By convention, one of these, the Prime Meridian, which passes through the Royal Observatory, Greenwich, England, was intended to establish the position of zero degrees longitude. The longitude of other places was to be measured as the angle east or west from the Prime Meridian, ranging from 0° at the Prime Meridian to +180° eastward and −180° westward. Specifically, it is the angle between a plane containing the Prime Meridian and a plane containing the North Pole, South Pole and the location in question. (This forms a right-handed coordinate system with the ''z'' axis (right hand thumb) pointing from the Earth's center toward the North Pole and the ''x'' axis (right hand index finger) extending from Earth's center through the equator at the Prime Meridian.)
A location's north–south position along a meridian is given by its latitude, which is (not quite exactly) the angle between the local vertical and the plane of the Equator.
If the Earth were perfectly spherical and homogeneous, then longitude at a point would just be the angle between a vertical north–south plane through that point and the plane of the Greenwich meridian. Everywhere on Earth the vertical north–south plane would contain the Earth's axis. But the Earth is not homogeneous, and has mountains—which have gravity and so can shift the vertical plane away from the Earth's axis. The vertical north–south plane still intersects the plane of the Greenwich meridian at some angle; that angle is astronomical longitude, the longitude you calculate from star observations. The longitude shown on maps and GPS devices is the angle between the Greenwich plane and a not-quite-vertical plane through the point; the not-quite-vertical plane is perpendicular to the surface of the spheroid chosen to approximate the Earth's sea-level surface, rather than perpendicular to the sea-level surface itself.
==History==
(詳細はcartography and for ocean navigation. Mariners and explorers for most of history struggled to determine longitude. Finding a method of determining longitude took centuries, resulting in the history of longitude recording the effort of some of the greatest scientific minds.
Latitude was calculated by observing with quadrant or astrolabe the altitude of the sun or of charted stars above the horizon, but longitude is harder.
Amerigo Vespucci was perhaps the first European to proffer a solution, after devoting a great deal of time and energy studying the problem during his sojourns in the New World:
As to longitude, I declare that I found so much difficulty in determining it that I was put to great pains to ascertain the east-west distance I had covered. The final result of my labours was that I found nothing better to do than to watch for and take observations at night of the conjunction of one planet with another, and especially of the conjunction of the moon with the other planets, because the moon is swifter in her course than any other planet. I compared my observations with an almanac. After I had made experiments many nights, one night, the twenty-third of August 1499, there was a conjunction of the moon with Mars, which according to the almanac was to occur at midnight or a half hour before. I found that...at midnight Mars's position was three and a half degrees to the east.〔Vespucci, Amerigo. "Letter from Seville to Lorenzo di Pier Francesco de' Medici, 1500." Pohl, Frederick J. Amerigo Vespucci: Pilot Major. New York: Columbia University Press, 1945. 76-90. Page 80.〕

By comparing the positions of the moon and Mars with their anticipated positions, Vespucci was able to crudely deduce his longitude. But this method had several limitations: First, it required the occurrence of a specific astronomical event (in this case, Mars passing through the same right ascension as the moon), and the observer needed to anticipate this event via an astronomical almanac. One needed also to know the precise time, which was difficult to ascertain in foreign lands. Finally, it required a stable viewing platform, rendering the technique useless on the rolling deck of a ship at sea. See Lunar distance (navigation).
In 1612 Galileo Galilei demonstrated that with sufficiently accurate knowledge of the orbits of the moons of Jupiter one could use their positions as a universal clock and this would make possible the determination of longitude, but the method he devised was impracticable for navigators on ships because of their instability.〔.〕 In 1714 the British government passed the Longitude Act which offered large financial rewards to the first person to demonstrate a practical method for determining the longitude of a ship at sea. These rewards motivated many to search for a solution.
John Harrison, a self-educated English clockmaker, invented the marine chronometer, a key piece in solving the problem of accurately establishing longitude at sea, thus revolutionising and extending the possibility of safe long distance sea travel.〔"(Longitude clock comes alive )". BBC. March 11, 2002.〕 Though the Board of Longitude rewarded John Harrison for his marine chronometer in 1773, chronometers remained very expensive and the lunar distance method continued to be used for decades. Finally, the combination of the availability of marine chronometers and wireless telegraph time signals put an end to the use of lunars in the 20th century.
Unlike latitude, which has the equator as a natural starting position, there is no natural starting position for longitude. Therefore, a reference meridian had to be chosen. It was a popular practice to use a nation's capital as the starting point, but other locations were also used. While British cartographers had long used the Greenwich meridian in London, other references were used elsewhere, including: El Hierro, Rome, Copenhagen, Jerusalem, Saint Petersburg, Pisa, Paris, Philadelphia, and Washington D.C. In 1884 the International Meridian Conference adopted the Greenwich meridian as the ''universal Prime Meridian'' or ''zero point of longitude''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Longitude」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.